L(s) = 1 | + 16-s − 8·19-s − 4·29-s + 4·41-s − 4·59-s + 4·61-s − 8·71-s + 81-s − 8·89-s − 4·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 16-s − 8·19-s − 4·29-s + 4·41-s − 4·59-s + 4·61-s − 8·71-s + 81-s − 8·89-s − 4·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2644485441\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2644485441\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{4} + T^{8} \) |
| 3 | \( 1 - T^{4} + T^{8} \) |
| 5 | \( 1 - T^{4} + T^{8} \) |
| 17 | \( ( 1 + T^{4} )^{2} \) |
good | 7 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 11 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 13 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 19 | \( ( 1 + T + T^{2} )^{8} \) |
| 23 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 29 | \( ( 1 + T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 31 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 37 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 41 | \( ( 1 - T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 43 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 47 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 53 | \( ( 1 + T^{2} )^{8} \) |
| 59 | \( ( 1 + T )^{8}( 1 - T + T^{2} )^{4} \) |
| 61 | \( ( 1 - T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 67 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 71 | \( ( 1 + T )^{8}( 1 + T^{2} )^{4} \) |
| 73 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 79 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 83 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 89 | \( ( 1 + T + T^{2} )^{8} \) |
| 97 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.02287619792768723994201795018, −3.92519966544518722581278113995, −3.83314985445791480478721445586, −3.42488852535591619105546401148, −3.37974268196763247247202877455, −3.15692958819277526165467486360, −2.98908690665198716527064080780, −2.91917291962515390800298208730, −2.78638953983634320453937175440, −2.76993428378933544429053190868, −2.75207187344942004821548143358, −2.64886931949734246548117315045, −2.36692942837220671111382962500, −2.13572873324579691924442833067, −2.04482797511391865026973160758, −1.88228741637393717897901458578, −1.85144890231971103490841204050, −1.78776664950927118286599439197, −1.66291503669152745347669707616, −1.54114097863756942579956503442, −1.37952753666690062054914334015, −1.16117107179965856398044851143, −0.75274853330840981537794667153, −0.43672668664789139288285486945, −0.21545597317553655936729959504,
0.21545597317553655936729959504, 0.43672668664789139288285486945, 0.75274853330840981537794667153, 1.16117107179965856398044851143, 1.37952753666690062054914334015, 1.54114097863756942579956503442, 1.66291503669152745347669707616, 1.78776664950927118286599439197, 1.85144890231971103490841204050, 1.88228741637393717897901458578, 2.04482797511391865026973160758, 2.13572873324579691924442833067, 2.36692942837220671111382962500, 2.64886931949734246548117315045, 2.75207187344942004821548143358, 2.76993428378933544429053190868, 2.78638953983634320453937175440, 2.91917291962515390800298208730, 2.98908690665198716527064080780, 3.15692958819277526165467486360, 3.37974268196763247247202877455, 3.42488852535591619105546401148, 3.83314985445791480478721445586, 3.92519966544518722581278113995, 4.02287619792768723994201795018
Plot not available for L-functions of degree greater than 10.