Properties

Label 16-3060e8-1.1-c0e8-0-12
Degree $16$
Conductor $7.687\times 10^{27}$
Sign $1$
Analytic cond. $29.5820$
Root an. cond. $1.23577$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·41-s + 8·53-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s − 256-s + ⋯
L(s)  = 1  + 8·41-s + 8·53-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s − 256-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(29.5820\)
Root analytic conductor: \(1.23577\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 17^{8} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.339359679\)
\(L(\frac12)\) \(\approx\) \(3.339359679\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T^{8} \)
3 \( 1 \)
5 \( ( 1 + T^{4} )^{2} \)
17 \( ( 1 + T^{4} )^{2} \)
good7 \( 1 + T^{16} \)
11 \( 1 + T^{16} \)
13 \( ( 1 + T^{8} )^{2} \)
19 \( ( 1 + T^{8} )^{2} \)
23 \( 1 + T^{16} \)
29 \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \)
31 \( 1 + T^{16} \)
37 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
41 \( ( 1 - T )^{8}( 1 + T^{8} ) \)
43 \( ( 1 + T^{8} )^{2} \)
47 \( ( 1 - T )^{8}( 1 + T )^{8} \)
53 \( ( 1 - T )^{8}( 1 + T^{4} )^{2} \)
59 \( ( 1 + T^{8} )^{2} \)
61 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
67 \( ( 1 + T^{4} )^{4} \)
71 \( 1 + T^{16} \)
73 \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \)
79 \( 1 + T^{16} \)
83 \( ( 1 + T^{8} )^{2} \)
89 \( ( 1 + T^{8} )^{2} \)
97 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.80843342978064287638362218088, −3.79733659762267152469941980654, −3.74636269602205829617048382713, −3.54831263977768224826002662283, −3.36712826645639734729542876990, −3.34211087911783598898137738079, −3.04445502221665069650022295393, −2.84512240431930874843005376852, −2.71974855998999049626091991739, −2.71594834573755052567038832889, −2.69237166317470861959956196399, −2.51188199420575308301051513277, −2.39930222484867921711165941502, −2.33254146379107986195832380352, −2.27126912485487564034838970679, −2.05056583119650083073397230960, −1.86533020243355741922817722702, −1.76136148501983299786157563426, −1.57349288976865048174089024217, −1.23710129093163576262541804817, −1.08181661553831789882355618683, −1.05510324335886166047219386318, −0.866295009597593236509781723983, −0.67564980425254987166418547586, −0.66157347538974979184424999251, 0.66157347538974979184424999251, 0.67564980425254987166418547586, 0.866295009597593236509781723983, 1.05510324335886166047219386318, 1.08181661553831789882355618683, 1.23710129093163576262541804817, 1.57349288976865048174089024217, 1.76136148501983299786157563426, 1.86533020243355741922817722702, 2.05056583119650083073397230960, 2.27126912485487564034838970679, 2.33254146379107986195832380352, 2.39930222484867921711165941502, 2.51188199420575308301051513277, 2.69237166317470861959956196399, 2.71594834573755052567038832889, 2.71974855998999049626091991739, 2.84512240431930874843005376852, 3.04445502221665069650022295393, 3.34211087911783598898137738079, 3.36712826645639734729542876990, 3.54831263977768224826002662283, 3.74636269602205829617048382713, 3.79733659762267152469941980654, 3.80843342978064287638362218088

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.