Properties

Label 16-26e8-1.1-c7e8-0-0
Degree $16$
Conductor $208827064576$
Sign $1$
Analytic cond. $1.89368\times 10^{7}$
Root an. cond. $2.84991$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 384·4-s + 556·5-s − 548·7-s + 1.76e3·9-s + 1.77e4·10-s − 7.39e3·11-s − 2.58e4·13-s − 1.75e4·14-s − 6.14e4·16-s + 2.83e4·17-s + 5.65e4·18-s − 9.98e4·19-s + 2.13e5·20-s − 2.36e5·22-s − 3.33e4·23-s − 7.10e4·25-s − 8.26e5·26-s + 7.08e4·27-s − 2.10e5·28-s + 9.31e4·29-s + 6.22e5·31-s − 7.86e5·32-s + 9.06e5·34-s − 3.04e5·35-s + 6.78e5·36-s − 9.63e3·37-s + ⋯
L(s)  = 1  + 2.82·2-s + 3·4-s + 1.98·5-s − 0.603·7-s + 0.807·9-s + 5.62·10-s − 1.67·11-s − 3.25·13-s − 1.70·14-s − 3.75·16-s + 1.39·17-s + 2.28·18-s − 3.34·19-s + 5.96·20-s − 4.73·22-s − 0.572·23-s − 0.909·25-s − 9.21·26-s + 0.692·27-s − 1.81·28-s + 0.709·29-s + 3.75·31-s − 4.24·32-s + 3.95·34-s − 1.20·35-s + 2.42·36-s − 0.0312·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(1.89368\times 10^{7}\)
Root analytic conductor: \(2.84991\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 13^{8} ,\ ( \ : [7/2]^{8} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(12.74656108\)
\(L(\frac12)\) \(\approx\) \(12.74656108\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{3} T + p^{6} T^{2} )^{4} \)
13 \( 1 + 1986 p T + 1099853 p^{2} T^{2} - 476713734 p^{3} T^{3} - 4584001548 p^{6} T^{4} - 476713734 p^{10} T^{5} + 1099853 p^{16} T^{6} + 1986 p^{22} T^{7} + p^{28} T^{8} \)
good3 \( 1 - 589 p T^{2} - 2624 p^{3} T^{3} - 247679 p^{2} T^{4} + 1729216 p^{4} T^{5} + 107431462 p^{4} T^{6} - 115526848 p^{6} T^{7} - 16347737066 p^{6} T^{8} - 115526848 p^{13} T^{9} + 107431462 p^{18} T^{10} + 1729216 p^{25} T^{11} - 247679 p^{30} T^{12} - 2624 p^{38} T^{13} - 589 p^{43} T^{14} + p^{56} T^{16} \)
5 \( ( 1 - 278 T + 151453 T^{2} - 10092158 p T^{3} + 507231524 p^{2} T^{4} - 10092158 p^{8} T^{5} + 151453 p^{14} T^{6} - 278 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
7 \( 1 + 548 T - 1138035 T^{2} - 1222097964 T^{3} + 107471171841 T^{4} + 727605589451640 T^{5} + 478925092223085470 T^{6} - \)\(12\!\cdots\!20\)\( T^{7} - \)\(37\!\cdots\!50\)\( T^{8} - \)\(12\!\cdots\!20\)\( p^{7} T^{9} + 478925092223085470 p^{14} T^{10} + 727605589451640 p^{21} T^{11} + 107471171841 p^{28} T^{12} - 1222097964 p^{35} T^{13} - 1138035 p^{42} T^{14} + 548 p^{49} T^{15} + p^{56} T^{16} \)
11 \( 1 + 672 p T - 15015695 T^{2} - 209572703216 T^{3} + 202098762294505 T^{4} + 3132174508300450192 T^{5} - \)\(54\!\cdots\!50\)\( T^{6} - \)\(18\!\cdots\!12\)\( T^{7} + \)\(15\!\cdots\!46\)\( T^{8} - \)\(18\!\cdots\!12\)\( p^{7} T^{9} - \)\(54\!\cdots\!50\)\( p^{14} T^{10} + 3132174508300450192 p^{21} T^{11} + 202098762294505 p^{28} T^{12} - 209572703216 p^{35} T^{13} - 15015695 p^{42} T^{14} + 672 p^{50} T^{15} + p^{56} T^{16} \)
17 \( 1 - 28316 T - 563111602 T^{2} + 7342663983176 T^{3} + 488082653800903993 T^{4} + \)\(16\!\cdots\!36\)\( T^{5} - \)\(26\!\cdots\!30\)\( T^{6} + \)\(65\!\cdots\!24\)\( T^{7} + \)\(75\!\cdots\!36\)\( T^{8} + \)\(65\!\cdots\!24\)\( p^{7} T^{9} - \)\(26\!\cdots\!30\)\( p^{14} T^{10} + \)\(16\!\cdots\!36\)\( p^{21} T^{11} + 488082653800903993 p^{28} T^{12} + 7342663983176 p^{35} T^{13} - 563111602 p^{42} T^{14} - 28316 p^{49} T^{15} + p^{56} T^{16} \)
19 \( 1 + 99888 T + 3675226065 T^{2} + 82754874802800 T^{3} + 3147787540762584233 T^{4} + \)\(61\!\cdots\!92\)\( p T^{5} + \)\(20\!\cdots\!82\)\( T^{6} + \)\(26\!\cdots\!72\)\( T^{7} + \)\(88\!\cdots\!06\)\( T^{8} + \)\(26\!\cdots\!72\)\( p^{7} T^{9} + \)\(20\!\cdots\!82\)\( p^{14} T^{10} + \)\(61\!\cdots\!92\)\( p^{22} T^{11} + 3147787540762584233 p^{28} T^{12} + 82754874802800 p^{35} T^{13} + 3675226065 p^{42} T^{14} + 99888 p^{49} T^{15} + p^{56} T^{16} \)
23 \( 1 + 33388 T - 3382348979 T^{2} - 387071200641348 T^{3} - 4201788242576114527 T^{4} + \)\(10\!\cdots\!32\)\( T^{5} + \)\(76\!\cdots\!90\)\( T^{6} - \)\(44\!\cdots\!88\)\( p T^{7} - \)\(28\!\cdots\!86\)\( T^{8} - \)\(44\!\cdots\!88\)\( p^{8} T^{9} + \)\(76\!\cdots\!90\)\( p^{14} T^{10} + \)\(10\!\cdots\!32\)\( p^{21} T^{11} - 4201788242576114527 p^{28} T^{12} - 387071200641348 p^{35} T^{13} - 3382348979 p^{42} T^{14} + 33388 p^{49} T^{15} + p^{56} T^{16} \)
29 \( 1 - 93140 T - 883636642 p T^{2} + 2243727152264568 T^{3} + 80055595218391895489 T^{4} + \)\(16\!\cdots\!12\)\( T^{5} - \)\(54\!\cdots\!38\)\( T^{6} - \)\(50\!\cdots\!24\)\( T^{7} + \)\(23\!\cdots\!96\)\( T^{8} - \)\(50\!\cdots\!24\)\( p^{7} T^{9} - \)\(54\!\cdots\!38\)\( p^{14} T^{10} + \)\(16\!\cdots\!12\)\( p^{21} T^{11} + 80055595218391895489 p^{28} T^{12} + 2243727152264568 p^{35} T^{13} - 883636642 p^{43} T^{14} - 93140 p^{49} T^{15} + p^{56} T^{16} \)
31 \( ( 1 - 311160 T + 140644653260 T^{2} - 26779795197492120 T^{3} + \)\(62\!\cdots\!06\)\( T^{4} - 26779795197492120 p^{7} T^{5} + 140644653260 p^{14} T^{6} - 311160 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
37 \( 1 + 9636 T - 360499434930 T^{2} - 281458294795032 T^{3} + \)\(79\!\cdots\!93\)\( T^{4} - \)\(11\!\cdots\!92\)\( T^{5} - \)\(11\!\cdots\!42\)\( T^{6} + \)\(57\!\cdots\!48\)\( T^{7} + \)\(12\!\cdots\!52\)\( T^{8} + \)\(57\!\cdots\!48\)\( p^{7} T^{9} - \)\(11\!\cdots\!42\)\( p^{14} T^{10} - \)\(11\!\cdots\!92\)\( p^{21} T^{11} + \)\(79\!\cdots\!93\)\( p^{28} T^{12} - 281458294795032 p^{35} T^{13} - 360499434930 p^{42} T^{14} + 9636 p^{49} T^{15} + p^{56} T^{16} \)
41 \( 1 - 82892 T - 546055663858 T^{2} + 146083811772340136 T^{3} + \)\(16\!\cdots\!97\)\( T^{4} - \)\(49\!\cdots\!72\)\( T^{5} - \)\(26\!\cdots\!70\)\( T^{6} + \)\(51\!\cdots\!24\)\( T^{7} + \)\(39\!\cdots\!32\)\( T^{8} + \)\(51\!\cdots\!24\)\( p^{7} T^{9} - \)\(26\!\cdots\!70\)\( p^{14} T^{10} - \)\(49\!\cdots\!72\)\( p^{21} T^{11} + \)\(16\!\cdots\!97\)\( p^{28} T^{12} + 146083811772340136 p^{35} T^{13} - 546055663858 p^{42} T^{14} - 82892 p^{49} T^{15} + p^{56} T^{16} \)
43 \( 1 + 569264 T - 351575602143 T^{2} - 362392294979896560 T^{3} + \)\(28\!\cdots\!45\)\( T^{4} + \)\(10\!\cdots\!36\)\( T^{5} + \)\(36\!\cdots\!86\)\( T^{6} - \)\(17\!\cdots\!80\)\( T^{7} - \)\(17\!\cdots\!06\)\( T^{8} - \)\(17\!\cdots\!80\)\( p^{7} T^{9} + \)\(36\!\cdots\!86\)\( p^{14} T^{10} + \)\(10\!\cdots\!36\)\( p^{21} T^{11} + \)\(28\!\cdots\!45\)\( p^{28} T^{12} - 362392294979896560 p^{35} T^{13} - 351575602143 p^{42} T^{14} + 569264 p^{49} T^{15} + p^{56} T^{16} \)
47 \( ( 1 + 574200 T + 1181775847100 T^{2} + 840326241178871192 T^{3} + \)\(77\!\cdots\!90\)\( T^{4} + 840326241178871192 p^{7} T^{5} + 1181775847100 p^{14} T^{6} + 574200 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
53 \( ( 1 - 1235350 T + 2684236572461 T^{2} - 3308983772395621830 T^{3} + \)\(45\!\cdots\!08\)\( T^{4} - 3308983772395621830 p^{7} T^{5} + 2684236572461 p^{14} T^{6} - 1235350 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
59 \( 1 - 231504 T - 2356814530631 T^{2} + 792722790467378240 T^{3} - \)\(33\!\cdots\!19\)\( T^{4} + \)\(84\!\cdots\!52\)\( T^{5} + \)\(82\!\cdots\!82\)\( T^{6} - \)\(49\!\cdots\!08\)\( T^{7} + \)\(67\!\cdots\!78\)\( T^{8} - \)\(49\!\cdots\!08\)\( p^{7} T^{9} + \)\(82\!\cdots\!82\)\( p^{14} T^{10} + \)\(84\!\cdots\!52\)\( p^{21} T^{11} - \)\(33\!\cdots\!19\)\( p^{28} T^{12} + 792722790467378240 p^{35} T^{13} - 2356814530631 p^{42} T^{14} - 231504 p^{49} T^{15} + p^{56} T^{16} \)
61 \( 1 - 685684 T + 3433715225862 T^{2} + 3646641375018060600 T^{3} - \)\(13\!\cdots\!07\)\( T^{4} + \)\(29\!\cdots\!28\)\( T^{5} + \)\(50\!\cdots\!06\)\( T^{6} - \)\(33\!\cdots\!84\)\( T^{7} + \)\(31\!\cdots\!12\)\( T^{8} - \)\(33\!\cdots\!84\)\( p^{7} T^{9} + \)\(50\!\cdots\!06\)\( p^{14} T^{10} + \)\(29\!\cdots\!28\)\( p^{21} T^{11} - \)\(13\!\cdots\!07\)\( p^{28} T^{12} + 3646641375018060600 p^{35} T^{13} + 3433715225862 p^{42} T^{14} - 685684 p^{49} T^{15} + p^{56} T^{16} \)
67 \( 1 - 3271056 T - 14689835850767 T^{2} + 35254481255509351008 T^{3} + \)\(21\!\cdots\!65\)\( T^{4} - \)\(32\!\cdots\!96\)\( T^{5} - \)\(17\!\cdots\!74\)\( T^{6} + \)\(57\!\cdots\!12\)\( T^{7} + \)\(13\!\cdots\!66\)\( T^{8} + \)\(57\!\cdots\!12\)\( p^{7} T^{9} - \)\(17\!\cdots\!74\)\( p^{14} T^{10} - \)\(32\!\cdots\!96\)\( p^{21} T^{11} + \)\(21\!\cdots\!65\)\( p^{28} T^{12} + 35254481255509351008 p^{35} T^{13} - 14689835850767 p^{42} T^{14} - 3271056 p^{49} T^{15} + p^{56} T^{16} \)
71 \( 1 + 175012 T - 22406789187435 T^{2} - 11058578082007940412 T^{3} + \)\(23\!\cdots\!77\)\( T^{4} + \)\(14\!\cdots\!04\)\( T^{5} - \)\(22\!\cdots\!78\)\( T^{6} - \)\(60\!\cdots\!80\)\( T^{7} + \)\(22\!\cdots\!82\)\( T^{8} - \)\(60\!\cdots\!80\)\( p^{7} T^{9} - \)\(22\!\cdots\!78\)\( p^{14} T^{10} + \)\(14\!\cdots\!04\)\( p^{21} T^{11} + \)\(23\!\cdots\!77\)\( p^{28} T^{12} - 11058578082007940412 p^{35} T^{13} - 22406789187435 p^{42} T^{14} + 175012 p^{49} T^{15} + p^{56} T^{16} \)
73 \( ( 1 - 7137890 T + 48989573892505 T^{2} - \)\(21\!\cdots\!78\)\( T^{3} + \)\(81\!\cdots\!12\)\( T^{4} - \)\(21\!\cdots\!78\)\( p^{7} T^{5} + 48989573892505 p^{14} T^{6} - 7137890 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
79 \( ( 1 + 7053952 T + 797675870260 p T^{2} + \)\(36\!\cdots\!40\)\( T^{3} + \)\(17\!\cdots\!66\)\( T^{4} + \)\(36\!\cdots\!40\)\( p^{7} T^{5} + 797675870260 p^{15} T^{6} + 7053952 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
83 \( ( 1 - 657288 T + 707565190612 p T^{2} + 83704316584548117240 T^{3} + \)\(16\!\cdots\!26\)\( T^{4} + 83704316584548117240 p^{7} T^{5} + 707565190612 p^{15} T^{6} - 657288 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
89 \( 1 + 11452234 T + 45324518002715 T^{2} + \)\(11\!\cdots\!06\)\( T^{3} + \)\(99\!\cdots\!45\)\( T^{4} + \)\(24\!\cdots\!60\)\( T^{5} + \)\(52\!\cdots\!74\)\( T^{6} + \)\(37\!\cdots\!08\)\( T^{7} + \)\(66\!\cdots\!22\)\( T^{8} + \)\(37\!\cdots\!08\)\( p^{7} T^{9} + \)\(52\!\cdots\!74\)\( p^{14} T^{10} + \)\(24\!\cdots\!60\)\( p^{21} T^{11} + \)\(99\!\cdots\!45\)\( p^{28} T^{12} + \)\(11\!\cdots\!06\)\( p^{35} T^{13} + 45324518002715 p^{42} T^{14} + 11452234 p^{49} T^{15} + p^{56} T^{16} \)
97 \( 1 + 428002 T - 262783180278813 T^{2} - \)\(24\!\cdots\!50\)\( T^{3} + \)\(39\!\cdots\!73\)\( T^{4} + \)\(35\!\cdots\!32\)\( T^{5} - \)\(42\!\cdots\!26\)\( T^{6} - \)\(13\!\cdots\!80\)\( T^{7} + \)\(37\!\cdots\!66\)\( T^{8} - \)\(13\!\cdots\!80\)\( p^{7} T^{9} - \)\(42\!\cdots\!26\)\( p^{14} T^{10} + \)\(35\!\cdots\!32\)\( p^{21} T^{11} + \)\(39\!\cdots\!73\)\( p^{28} T^{12} - \)\(24\!\cdots\!50\)\( p^{35} T^{13} - 262783180278813 p^{42} T^{14} + 428002 p^{49} T^{15} + p^{56} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.81168357888632453050945433734, −6.41202421035417755654813853444, −6.34734425840558225407562277420, −6.01761739580206786286193250518, −5.78443546173782474486460611623, −5.61392653010655724868642819762, −5.53261499213347158230359298570, −5.46484886820953479772836985539, −4.79274759649410613750469996864, −4.68103046049712956632384351648, −4.67975183157922891483601731651, −4.52559608014640163369828050410, −4.36270168228763664302675118250, −3.83752993980241522668129601175, −3.55158826630784322412726203703, −3.39338269765668062466063672318, −2.78085853788222646183678354315, −2.71018029187727279853891285228, −2.38291324254866173764632379237, −2.20771799778827641035146128298, −2.10824556057425073623084577750, −1.74495065676387056838552167449, −0.77624088404093377737204112699, −0.56010130648833225088231556862, −0.28637075526289471709435495819, 0.28637075526289471709435495819, 0.56010130648833225088231556862, 0.77624088404093377737204112699, 1.74495065676387056838552167449, 2.10824556057425073623084577750, 2.20771799778827641035146128298, 2.38291324254866173764632379237, 2.71018029187727279853891285228, 2.78085853788222646183678354315, 3.39338269765668062466063672318, 3.55158826630784322412726203703, 3.83752993980241522668129601175, 4.36270168228763664302675118250, 4.52559608014640163369828050410, 4.67975183157922891483601731651, 4.68103046049712956632384351648, 4.79274759649410613750469996864, 5.46484886820953479772836985539, 5.53261499213347158230359298570, 5.61392653010655724868642819762, 5.78443546173782474486460611623, 6.01761739580206786286193250518, 6.34734425840558225407562277420, 6.41202421035417755654813853444, 6.81168357888632453050945433734

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.