Properties

Label 16-2112e8-1.1-c1e8-0-6
Degree $16$
Conductor $3.959\times 10^{26}$
Sign $1$
Analytic cond. $6.54286\times 10^{9}$
Root an. cond. $4.10662$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s + 36·9-s + 8·11-s + 16·25-s + 120·27-s + 64·33-s − 16·49-s + 32·59-s − 64·67-s + 128·75-s + 330·81-s − 32·89-s + 64·97-s + 288·99-s − 32·113-s + 36·121-s + 127-s + 131-s + 137-s + 139-s − 128·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 64·169-s + ⋯
L(s)  = 1  + 4.61·3-s + 12·9-s + 2.41·11-s + 16/5·25-s + 23.0·27-s + 11.1·33-s − 2.28·49-s + 4.16·59-s − 7.81·67-s + 14.7·75-s + 36.6·81-s − 3.39·89-s + 6.49·97-s + 28.9·99-s − 3.01·113-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.5·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4.92·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(6.54286\times 10^{9}\)
Root analytic conductor: \(4.10662\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 3^{8} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(25.09802411\)
\(L(\frac12)\) \(\approx\) \(25.09802411\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 - T )^{8} \)
11 \( ( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
good5 \( ( 1 - 8 T^{2} + 46 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
7 \( ( 1 + 8 T^{2} + 94 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 + 32 T^{2} + 574 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 12 T^{2} + 294 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 36 T^{2} + 726 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 80 T^{2} + 2638 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 76 T^{2} + 2806 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{4} \)
37 \( ( 1 - 100 T^{2} + 4918 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 84 T^{2} + 4806 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - 132 T^{2} + 7734 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 160 T^{2} + 10638 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 200 T^{2} + 15598 T^{4} - 200 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 4 T + p T^{2} )^{8} \)
61 \( ( 1 + 144 T^{2} + 10206 T^{4} + 144 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 + 8 T + p T^{2} )^{8} \)
71 \( ( 1 - 96 T^{2} + 3566 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 212 T^{2} + 21574 T^{4} - 212 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 - 24 T^{2} + 12606 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 - 132 T^{2} + 17814 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 8 T + 14 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
97 \( ( 1 - 16 T + 238 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.72957094018226333654987165615, −3.48021769689897485918527421640, −3.44819992790054438287451694819, −3.41743218155382442642578894314, −3.30760033528959452075878587275, −3.23502883704045642468945647086, −3.13397924312298050523042460835, −2.99801157328739761078437349148, −2.82305514478702160125491784618, −2.70999753358647604582109294473, −2.64162076381377477662776735215, −2.52454661162660402551971693495, −2.24077778079260068514273026912, −2.14574970346148050745634299596, −2.07303504847157466126494277564, −1.97756425585687873960851387364, −1.84405539217763664348262954973, −1.50487140620469016976157397499, −1.42963995576102604892506955568, −1.35303620115156347109209667354, −1.19333983112247701079599101677, −1.06846437398289278528684945330, −0.913211565520439327764649421529, −0.70432919958612635822759674867, −0.11603836261291332019293115594, 0.11603836261291332019293115594, 0.70432919958612635822759674867, 0.913211565520439327764649421529, 1.06846437398289278528684945330, 1.19333983112247701079599101677, 1.35303620115156347109209667354, 1.42963995576102604892506955568, 1.50487140620469016976157397499, 1.84405539217763664348262954973, 1.97756425585687873960851387364, 2.07303504847157466126494277564, 2.14574970346148050745634299596, 2.24077778079260068514273026912, 2.52454661162660402551971693495, 2.64162076381377477662776735215, 2.70999753358647604582109294473, 2.82305514478702160125491784618, 2.99801157328739761078437349148, 3.13397924312298050523042460835, 3.23502883704045642468945647086, 3.30760033528959452075878587275, 3.41743218155382442642578894314, 3.44819992790054438287451694819, 3.48021769689897485918527421640, 3.72957094018226333654987165615

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.