Properties

Label 16-189e8-1.1-c9e8-0-1
Degree $16$
Conductor $1.628\times 10^{18}$
Sign $1$
Analytic cond. $8.06109\times 10^{15}$
Root an. cond. $9.86619$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $8$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.96e3·4-s + 1.92e4·7-s − 9.45e4·13-s + 1.74e6·16-s − 2.08e6·19-s − 6.07e6·25-s − 3.77e7·28-s − 8.13e6·31-s + 1.56e7·37-s − 6.17e6·43-s + 2.07e8·49-s + 1.85e8·52-s + 6.32e7·61-s − 9.08e8·64-s − 5.55e8·67-s − 3.66e8·73-s + 4.10e9·76-s − 4.90e8·79-s − 1.81e9·91-s − 1.40e9·97-s + 1.19e10·100-s − 6.90e9·103-s − 1.27e9·109-s + 3.34e10·112-s − 1.49e10·121-s + 1.59e10·124-s + 127-s + ⋯
L(s)  = 1  − 3.83·4-s + 3.02·7-s − 0.918·13-s + 6.63·16-s − 3.67·19-s − 3.11·25-s − 11.5·28-s − 1.58·31-s + 1.36·37-s − 0.275·43-s + 36/7·49-s + 3.52·52-s + 0.585·61-s − 6.76·64-s − 3.36·67-s − 1.51·73-s + 14.1·76-s − 1.41·79-s − 2.77·91-s − 1.60·97-s + 11.9·100-s − 6.04·103-s − 0.864·109-s + 20.0·112-s − 6.35·121-s + 6.06·124-s − 11.1·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{24} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(8.06109\times 10^{15}\)
Root analytic conductor: \(9.86619\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(8\)
Selberg data: \((16,\ 3^{24} \cdot 7^{8} ,\ ( \ : [9/2]^{8} ),\ 1 )\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( ( 1 - p^{4} T )^{8} \)
good2 \( 1 + 1963 T^{2} + 528289 p^{2} T^{4} + 25630819 p^{6} T^{6} + 1850831 p^{19} T^{8} + 25630819 p^{24} T^{10} + 528289 p^{38} T^{12} + 1963 p^{54} T^{14} + p^{72} T^{16} \)
5 \( 1 + 6079168 T^{2} + 16065515630206 T^{4} + 1277376463146776824 p^{2} T^{6} + \)\(10\!\cdots\!79\)\( p^{4} T^{8} + 1277376463146776824 p^{20} T^{10} + 16065515630206 p^{36} T^{12} + 6079168 p^{54} T^{14} + p^{72} T^{16} \)
11 \( 1 + 14986207504 T^{2} + \)\(10\!\cdots\!02\)\( T^{4} + \)\(43\!\cdots\!40\)\( T^{6} + \)\(12\!\cdots\!31\)\( T^{8} + \)\(43\!\cdots\!40\)\( p^{18} T^{10} + \)\(10\!\cdots\!02\)\( p^{36} T^{12} + 14986207504 p^{54} T^{14} + p^{72} T^{16} \)
13 \( ( 1 + 47278 T + 27538690852 T^{2} + 1376493618944482 T^{3} + \)\(39\!\cdots\!86\)\( T^{4} + 1376493618944482 p^{9} T^{5} + 27538690852 p^{18} T^{6} + 47278 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
17 \( 1 + 199453340584 T^{2} + \)\(19\!\cdots\!36\)\( p T^{4} + \)\(51\!\cdots\!00\)\( T^{6} + \)\(80\!\cdots\!86\)\( T^{8} + \)\(51\!\cdots\!00\)\( p^{18} T^{10} + \)\(19\!\cdots\!36\)\( p^{37} T^{12} + 199453340584 p^{54} T^{14} + p^{72} T^{16} \)
19 \( ( 1 + 1044964 T + 1018304076682 T^{2} + 728224758044237464 T^{3} + \)\(51\!\cdots\!95\)\( T^{4} + 728224758044237464 p^{9} T^{5} + 1018304076682 p^{18} T^{6} + 1044964 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
23 \( 1 + 10105922945296 T^{2} + \)\(46\!\cdots\!02\)\( T^{4} + \)\(13\!\cdots\!28\)\( T^{6} + \)\(27\!\cdots\!75\)\( T^{8} + \)\(13\!\cdots\!28\)\( p^{18} T^{10} + \)\(46\!\cdots\!02\)\( p^{36} T^{12} + 10105922945296 p^{54} T^{14} + p^{72} T^{16} \)
29 \( 1 + 57053062194292 T^{2} + \)\(17\!\cdots\!32\)\( T^{4} + \)\(37\!\cdots\!40\)\( T^{6} + \)\(61\!\cdots\!34\)\( T^{8} + \)\(37\!\cdots\!40\)\( p^{18} T^{10} + \)\(17\!\cdots\!32\)\( p^{36} T^{12} + 57053062194292 p^{54} T^{14} + p^{72} T^{16} \)
31 \( ( 1 + 4068298 T - 8390538453392 T^{2} - 45744645086994852200 T^{3} + \)\(41\!\cdots\!81\)\( T^{4} - 45744645086994852200 p^{9} T^{5} - 8390538453392 p^{18} T^{6} + 4068298 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
37 \( ( 1 - 7804610 T + 216273038846140 T^{2} - \)\(26\!\cdots\!60\)\( T^{3} + \)\(18\!\cdots\!37\)\( T^{4} - \)\(26\!\cdots\!60\)\( p^{9} T^{5} + 216273038846140 p^{18} T^{6} - 7804610 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
41 \( 1 + 941202615658240 T^{2} + \)\(60\!\cdots\!94\)\( T^{4} + \)\(28\!\cdots\!52\)\( T^{6} + \)\(10\!\cdots\!19\)\( T^{8} + \)\(28\!\cdots\!52\)\( p^{18} T^{10} + \)\(60\!\cdots\!94\)\( p^{36} T^{12} + 941202615658240 p^{54} T^{14} + p^{72} T^{16} \)
43 \( ( 1 + 3086830 T + 1057201196352112 T^{2} + \)\(43\!\cdots\!58\)\( T^{3} + \)\(60\!\cdots\!22\)\( T^{4} + \)\(43\!\cdots\!58\)\( p^{9} T^{5} + 1057201196352112 p^{18} T^{6} + 3086830 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
47 \( 1 - 102284284056308 T^{2} + \)\(10\!\cdots\!40\)\( T^{4} + \)\(24\!\cdots\!80\)\( T^{6} - \)\(70\!\cdots\!94\)\( T^{8} + \)\(24\!\cdots\!80\)\( p^{18} T^{10} + \)\(10\!\cdots\!40\)\( p^{36} T^{12} - 102284284056308 p^{54} T^{14} + p^{72} T^{16} \)
53 \( 1 + 8585271284037688 T^{2} + \)\(26\!\cdots\!92\)\( T^{4} - \)\(71\!\cdots\!84\)\( T^{6} - \)\(21\!\cdots\!66\)\( T^{8} - \)\(71\!\cdots\!84\)\( p^{18} T^{10} + \)\(26\!\cdots\!92\)\( p^{36} T^{12} + 8585271284037688 p^{54} T^{14} + p^{72} T^{16} \)
59 \( 1 + 26776750535661052 T^{2} + \)\(47\!\cdots\!72\)\( T^{4} + \)\(55\!\cdots\!40\)\( T^{6} + \)\(15\!\cdots\!34\)\( p^{2} T^{8} + \)\(55\!\cdots\!40\)\( p^{18} T^{10} + \)\(47\!\cdots\!72\)\( p^{36} T^{12} + 26776750535661052 p^{54} T^{14} + p^{72} T^{16} \)
61 \( ( 1 - 31647752 T + 21902035437348148 T^{2} - \)\(57\!\cdots\!60\)\( T^{3} + \)\(23\!\cdots\!46\)\( T^{4} - \)\(57\!\cdots\!60\)\( p^{9} T^{5} + 21902035437348148 p^{18} T^{6} - 31647752 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
67 \( ( 1 + 277559002 T + 96985273599608572 T^{2} + \)\(19\!\cdots\!90\)\( T^{3} + \)\(38\!\cdots\!66\)\( T^{4} + \)\(19\!\cdots\!90\)\( p^{9} T^{5} + 96985273599608572 p^{18} T^{6} + 277559002 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
71 \( 1 + 246899786199858136 T^{2} + \)\(30\!\cdots\!10\)\( T^{4} + \)\(24\!\cdots\!44\)\( T^{6} + \)\(13\!\cdots\!19\)\( T^{8} + \)\(24\!\cdots\!44\)\( p^{18} T^{10} + \)\(30\!\cdots\!10\)\( p^{36} T^{12} + 246899786199858136 p^{54} T^{14} + p^{72} T^{16} \)
73 \( ( 1 + 183380230 T + 164887693399811152 T^{2} + \)\(19\!\cdots\!82\)\( T^{3} + \)\(12\!\cdots\!62\)\( T^{4} + \)\(19\!\cdots\!82\)\( p^{9} T^{5} + 164887693399811152 p^{18} T^{6} + 183380230 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
79 \( ( 1 + 245057518 T + 235688929600592224 T^{2} + \)\(73\!\cdots\!86\)\( T^{3} + \)\(35\!\cdots\!50\)\( T^{4} + \)\(73\!\cdots\!86\)\( p^{9} T^{5} + 235688929600592224 p^{18} T^{6} + 245057518 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
83 \( 1 + 804952885144418020 T^{2} + \)\(34\!\cdots\!24\)\( T^{4} + \)\(98\!\cdots\!20\)\( T^{6} + \)\(21\!\cdots\!06\)\( T^{8} + \)\(98\!\cdots\!20\)\( p^{18} T^{10} + \)\(34\!\cdots\!24\)\( p^{36} T^{12} + 804952885144418020 p^{54} T^{14} + p^{72} T^{16} \)
89 \( 1 + 255644176219027984 T^{2} + \)\(40\!\cdots\!70\)\( T^{4} + \)\(81\!\cdots\!56\)\( T^{6} + \)\(71\!\cdots\!99\)\( T^{8} + \)\(81\!\cdots\!56\)\( p^{18} T^{10} + \)\(40\!\cdots\!70\)\( p^{36} T^{12} + 255644176219027984 p^{54} T^{14} + p^{72} T^{16} \)
97 \( ( 1 + 701439760 T + 2574378986272688260 T^{2} + \)\(14\!\cdots\!40\)\( T^{3} + \)\(27\!\cdots\!38\)\( T^{4} + \)\(14\!\cdots\!40\)\( p^{9} T^{5} + 2574378986272688260 p^{18} T^{6} + 701439760 p^{27} T^{7} + p^{36} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.60774486343064521718931646134, −4.31934795376837704878769669805, −4.19298060313095401904935560777, −4.14614254131024986950781175261, −4.03783647588706667066473655930, −4.02656847942879107160037448235, −3.95053865539791803953911849458, −3.92467801768293042187791524984, −3.81708129951178704002838570379, −3.19816377994803821946570044095, −3.12954559678333309312324448829, −2.94186596067038033112404682131, −2.59977294594945191821117414551, −2.53634794426327313167841049430, −2.34612114259041238693844142879, −2.27496964412398464451646821264, −2.09409456148431340196845632696, −2.01986042285413241483164050262, −1.72639379304306639183457163168, −1.44116845263649140256043544244, −1.27688350587196947192057449333, −1.24194539254201110023658112698, −1.15701255813966835249303450237, −1.09052455717484414585966528154, −0.927042990203747731981174980392, 0, 0, 0, 0, 0, 0, 0, 0, 0.927042990203747731981174980392, 1.09052455717484414585966528154, 1.15701255813966835249303450237, 1.24194539254201110023658112698, 1.27688350587196947192057449333, 1.44116845263649140256043544244, 1.72639379304306639183457163168, 2.01986042285413241483164050262, 2.09409456148431340196845632696, 2.27496964412398464451646821264, 2.34612114259041238693844142879, 2.53634794426327313167841049430, 2.59977294594945191821117414551, 2.94186596067038033112404682131, 3.12954559678333309312324448829, 3.19816377994803821946570044095, 3.81708129951178704002838570379, 3.92467801768293042187791524984, 3.95053865539791803953911849458, 4.02656847942879107160037448235, 4.03783647588706667066473655930, 4.14614254131024986950781175261, 4.19298060313095401904935560777, 4.31934795376837704878769669805, 4.60774486343064521718931646134

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.