Properties

Label 16-162e8-1.1-c6e8-0-1
Degree $16$
Conductor $4.744\times 10^{17}$
Sign $1$
Analytic cond. $3.72185\times 10^{12}$
Root an. cond. $6.10481$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 128·4-s + 964·7-s + 4.54e3·13-s + 1.02e4·16-s − 2.36e4·19-s + 4.63e4·25-s − 1.23e5·28-s + 7.70e4·31-s − 1.13e4·37-s − 2.26e5·43-s + 6.43e5·49-s − 5.81e5·52-s − 3.27e5·61-s − 6.55e5·64-s + 1.71e6·67-s − 2.18e6·73-s + 3.03e6·76-s − 1.32e6·79-s + 4.37e6·91-s − 2.20e6·97-s − 5.92e6·100-s − 4.49e4·103-s + 4.47e5·109-s + 9.87e6·112-s + 2.06e6·121-s − 9.86e6·124-s + 127-s + ⋯
L(s)  = 1  − 2·4-s + 2.81·7-s + 2.06·13-s + 5/2·16-s − 3.45·19-s + 2.96·25-s − 5.62·28-s + 2.58·31-s − 0.224·37-s − 2.85·43-s + 5.46·49-s − 4.13·52-s − 1.44·61-s − 5/2·64-s + 5.69·67-s − 5.62·73-s + 6.90·76-s − 2.69·79-s + 5.80·91-s − 2.41·97-s − 5.92·100-s − 0.0411·103-s + 0.345·109-s + 7.02·112-s + 1.16·121-s − 5.17·124-s − 9.70·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{32}\)
Sign: $1$
Analytic conductor: \(3.72185\times 10^{12}\)
Root analytic conductor: \(6.10481\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{32} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.093925034\)
\(L(\frac12)\) \(\approx\) \(1.093925034\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{5} T^{2} )^{4} \)
3 \( 1 \)
good5 \( 1 - 46304 T^{2} + 1650266686 T^{4} - 59862115328 p^{4} T^{6} + 1769541248611 p^{8} T^{8} - 59862115328 p^{16} T^{10} + 1650266686 p^{24} T^{12} - 46304 p^{36} T^{14} + p^{48} T^{16} \)
7 \( ( 1 - 482 T + 26938 T^{2} - 17028398 T^{3} + 18436500226 T^{4} - 17028398 p^{6} T^{5} + 26938 p^{12} T^{6} - 482 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
11 \( 1 - 2067740 T^{2} + 3021523804504 T^{4} - 2921892925855093364 T^{6} - \)\(30\!\cdots\!26\)\( T^{8} - 2921892925855093364 p^{12} T^{10} + 3021523804504 p^{24} T^{12} - 2067740 p^{36} T^{14} + p^{48} T^{16} \)
13 \( ( 1 - 2270 T + 12646702 T^{2} - 30153498176 T^{3} + 78761957653363 T^{4} - 30153498176 p^{6} T^{5} + 12646702 p^{12} T^{6} - 2270 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
17 \( 1 - 141183800 T^{2} + 9651342187425574 T^{4} - \)\(41\!\cdots\!68\)\( T^{6} + \)\(11\!\cdots\!39\)\( T^{8} - \)\(41\!\cdots\!68\)\( p^{12} T^{10} + 9651342187425574 p^{24} T^{12} - 141183800 p^{36} T^{14} + p^{48} T^{16} \)
19 \( ( 1 + 11842 T + 122570434 T^{2} + 382269231070 T^{3} + 2961485052850642 T^{4} + 382269231070 p^{6} T^{5} + 122570434 p^{12} T^{6} + 11842 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
23 \( 1 - 602193140 T^{2} + 208847216279397736 T^{4} - \)\(21\!\cdots\!20\)\( p T^{6} + \)\(84\!\cdots\!06\)\( T^{8} - \)\(21\!\cdots\!20\)\( p^{13} T^{10} + 208847216279397736 p^{24} T^{12} - 602193140 p^{36} T^{14} + p^{48} T^{16} \)
29 \( 1 - 3072361832 T^{2} + 4718062571292062902 T^{4} - \)\(46\!\cdots\!80\)\( T^{6} + \)\(32\!\cdots\!39\)\( T^{8} - \)\(46\!\cdots\!80\)\( p^{12} T^{10} + 4718062571292062902 p^{24} T^{12} - 3072361832 p^{36} T^{14} + p^{48} T^{16} \)
31 \( ( 1 - 38528 T + 2054564344 T^{2} - 23224523393216 T^{3} + 1280087508642426862 T^{4} - 23224523393216 p^{6} T^{5} + 2054564344 p^{12} T^{6} - 38528 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
37 \( ( 1 + 5674 T + 2614216798 T^{2} - 33031702931096 T^{3} + 7074013795851396475 T^{4} - 33031702931096 p^{6} T^{5} + 2614216798 p^{12} T^{6} + 5674 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
41 \( 1 - 24361730072 T^{2} + \)\(25\!\cdots\!80\)\( T^{4} - \)\(15\!\cdots\!00\)\( T^{6} + \)\(75\!\cdots\!06\)\( T^{8} - \)\(15\!\cdots\!00\)\( p^{12} T^{10} + \)\(25\!\cdots\!80\)\( p^{24} T^{12} - 24361730072 p^{36} T^{14} + p^{48} T^{16} \)
43 \( ( 1 + 113302 T + 25372893394 T^{2} + 975408578554 p^{2} T^{3} + \)\(23\!\cdots\!58\)\( T^{4} + 975408578554 p^{8} T^{5} + 25372893394 p^{12} T^{6} + 113302 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 - 45886260248 T^{2} + \)\(10\!\cdots\!48\)\( T^{4} - \)\(16\!\cdots\!44\)\( T^{6} + \)\(20\!\cdots\!74\)\( T^{8} - \)\(16\!\cdots\!44\)\( p^{12} T^{10} + \)\(10\!\cdots\!48\)\( p^{24} T^{12} - 45886260248 p^{36} T^{14} + p^{48} T^{16} \)
53 \( 1 - 97731632312 T^{2} + \)\(51\!\cdots\!92\)\( T^{4} - \)\(18\!\cdots\!08\)\( T^{6} + \)\(47\!\cdots\!10\)\( T^{8} - \)\(18\!\cdots\!08\)\( p^{12} T^{10} + \)\(51\!\cdots\!92\)\( p^{24} T^{12} - 97731632312 p^{36} T^{14} + p^{48} T^{16} \)
59 \( 1 - 68754072824 T^{2} + \)\(28\!\cdots\!84\)\( T^{4} - \)\(11\!\cdots\!72\)\( T^{6} + \)\(39\!\cdots\!58\)\( T^{8} - \)\(11\!\cdots\!72\)\( p^{12} T^{10} + \)\(28\!\cdots\!84\)\( p^{24} T^{12} - 68754072824 p^{36} T^{14} + p^{48} T^{16} \)
61 \( ( 1 + 163738 T + 5375311858 T^{2} - 12587109571985600 T^{3} - 34867093543223492069 p T^{4} - 12587109571985600 p^{6} T^{5} + 5375311858 p^{12} T^{6} + 163738 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
67 \( ( 1 - 856646 T + 496161770266 T^{2} - 190187424030542330 T^{3} + \)\(64\!\cdots\!22\)\( T^{4} - 190187424030542330 p^{6} T^{5} + 496161770266 p^{12} T^{6} - 856646 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
71 \( 1 - 212021007668 T^{2} + \)\(13\!\cdots\!04\)\( T^{4} - \)\(57\!\cdots\!84\)\( T^{6} + \)\(84\!\cdots\!38\)\( T^{8} - \)\(57\!\cdots\!84\)\( p^{12} T^{10} + \)\(13\!\cdots\!04\)\( p^{24} T^{12} - 212021007668 p^{36} T^{14} + p^{48} T^{16} \)
73 \( ( 1 + 1094608 T + 746233393222 T^{2} + 336788359861632640 T^{3} + \)\(13\!\cdots\!03\)\( T^{4} + 336788359861632640 p^{6} T^{5} + 746233393222 p^{12} T^{6} + 1094608 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
79 \( ( 1 + 8398 p T + 858780911746 T^{2} + 463539447756297070 T^{3} + \)\(30\!\cdots\!54\)\( T^{4} + 463539447756297070 p^{6} T^{5} + 858780911746 p^{12} T^{6} + 8398 p^{19} T^{7} + p^{24} T^{8} )^{2} \)
83 \( 1 - 1910425105592 T^{2} + \)\(16\!\cdots\!44\)\( T^{4} - \)\(92\!\cdots\!80\)\( T^{6} + \)\(35\!\cdots\!62\)\( T^{8} - \)\(92\!\cdots\!80\)\( p^{12} T^{10} + \)\(16\!\cdots\!44\)\( p^{24} T^{12} - 1910425105592 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 - 1054207551824 T^{2} + \)\(82\!\cdots\!70\)\( T^{4} - \)\(51\!\cdots\!84\)\( T^{6} + \)\(24\!\cdots\!75\)\( T^{8} - \)\(51\!\cdots\!84\)\( p^{12} T^{10} + \)\(82\!\cdots\!70\)\( p^{24} T^{12} - 1054207551824 p^{36} T^{14} + p^{48} T^{16} \)
97 \( ( 1 + 1100032 T + 2005275894904 T^{2} + 1141210218432366016 T^{3} + \)\(17\!\cdots\!18\)\( T^{4} + 1141210218432366016 p^{6} T^{5} + 2005275894904 p^{12} T^{6} + 1100032 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.60662838388509470817841173791, −4.39816369798921574547822711741, −4.30667027430073679896242956731, −4.30351383789941592818317926919, −4.14551393925702930196530321284, −4.06052551504018568920692979578, −3.69383235514998664572906287737, −3.66519497439467940766105822609, −3.28751230022939231324379122123, −3.12611661831867952698889134618, −2.96089421146667115527579611197, −2.83662686978823647414834873384, −2.48180395293667665606355664628, −2.37315005162079808384891436105, −2.21280817219030915462233519789, −1.74321159128271946207654877190, −1.73262750793074884281652303882, −1.57479375120172598624867436012, −1.19330644621618535124325887074, −1.19162100874893322881330966975, −1.09952539244804774506001404144, −0.873613194864486893900394988954, −0.46212977243488634455341763186, −0.41285624890765573214059246185, −0.07131499567096626553503045981, 0.07131499567096626553503045981, 0.41285624890765573214059246185, 0.46212977243488634455341763186, 0.873613194864486893900394988954, 1.09952539244804774506001404144, 1.19162100874893322881330966975, 1.19330644621618535124325887074, 1.57479375120172598624867436012, 1.73262750793074884281652303882, 1.74321159128271946207654877190, 2.21280817219030915462233519789, 2.37315005162079808384891436105, 2.48180395293667665606355664628, 2.83662686978823647414834873384, 2.96089421146667115527579611197, 3.12611661831867952698889134618, 3.28751230022939231324379122123, 3.66519497439467940766105822609, 3.69383235514998664572906287737, 4.06052551504018568920692979578, 4.14551393925702930196530321284, 4.30351383789941592818317926919, 4.30667027430073679896242956731, 4.39816369798921574547822711741, 4.60662838388509470817841173791

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.