L(s) = 1 | − 128·4-s + 964·7-s + 4.54e3·13-s + 1.02e4·16-s − 2.36e4·19-s + 4.63e4·25-s − 1.23e5·28-s + 7.70e4·31-s − 1.13e4·37-s − 2.26e5·43-s + 6.43e5·49-s − 5.81e5·52-s − 3.27e5·61-s − 6.55e5·64-s + 1.71e6·67-s − 2.18e6·73-s + 3.03e6·76-s − 1.32e6·79-s + 4.37e6·91-s − 2.20e6·97-s − 5.92e6·100-s − 4.49e4·103-s + 4.47e5·109-s + 9.87e6·112-s + 2.06e6·121-s − 9.86e6·124-s + 127-s + ⋯ |
L(s) = 1 | − 2·4-s + 2.81·7-s + 2.06·13-s + 5/2·16-s − 3.45·19-s + 2.96·25-s − 5.62·28-s + 2.58·31-s − 0.224·37-s − 2.85·43-s + 5.46·49-s − 4.13·52-s − 1.44·61-s − 5/2·64-s + 5.69·67-s − 5.62·73-s + 6.90·76-s − 2.69·79-s + 5.80·91-s − 2.41·97-s − 5.92·100-s − 0.0411·103-s + 0.345·109-s + 7.02·112-s + 1.16·121-s − 5.17·124-s − 9.70·133-s + ⋯ |
Λ(s)=(=((28⋅332)s/2ΓC(s)8L(s)Λ(7−s)
Λ(s)=(=((28⋅332)s/2ΓC(s+3)8L(s)Λ(1−s)
Particular Values
L(27) |
≈ |
1.093925034 |
L(21) |
≈ |
1.093925034 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p5T2)4 |
| 3 | 1 |
good | 5 | 1−46304T2+1650266686T4−59862115328p4T6+1769541248611p8T8−59862115328p16T10+1650266686p24T12−46304p36T14+p48T16 |
| 7 | (1−482T+26938T2−17028398T3+18436500226T4−17028398p6T5+26938p12T6−482p18T7+p24T8)2 |
| 11 | 1−2067740T2+3021523804504T4−2921892925855093364T6−30⋯26T8−2921892925855093364p12T10+3021523804504p24T12−2067740p36T14+p48T16 |
| 13 | (1−2270T+12646702T2−30153498176T3+78761957653363T4−30153498176p6T5+12646702p12T6−2270p18T7+p24T8)2 |
| 17 | 1−141183800T2+9651342187425574T4−41⋯68T6+11⋯39T8−41⋯68p12T10+9651342187425574p24T12−141183800p36T14+p48T16 |
| 19 | (1+11842T+122570434T2+382269231070T3+2961485052850642T4+382269231070p6T5+122570434p12T6+11842p18T7+p24T8)2 |
| 23 | 1−602193140T2+208847216279397736T4−21⋯20pT6+84⋯06T8−21⋯20p13T10+208847216279397736p24T12−602193140p36T14+p48T16 |
| 29 | 1−3072361832T2+4718062571292062902T4−46⋯80T6+32⋯39T8−46⋯80p12T10+4718062571292062902p24T12−3072361832p36T14+p48T16 |
| 31 | (1−38528T+2054564344T2−23224523393216T3+1280087508642426862T4−23224523393216p6T5+2054564344p12T6−38528p18T7+p24T8)2 |
| 37 | (1+5674T+2614216798T2−33031702931096T3+7074013795851396475T4−33031702931096p6T5+2614216798p12T6+5674p18T7+p24T8)2 |
| 41 | 1−24361730072T2+25⋯80T4−15⋯00T6+75⋯06T8−15⋯00p12T10+25⋯80p24T12−24361730072p36T14+p48T16 |
| 43 | (1+113302T+25372893394T2+975408578554p2T3+23⋯58T4+975408578554p8T5+25372893394p12T6+113302p18T7+p24T8)2 |
| 47 | 1−45886260248T2+10⋯48T4−16⋯44T6+20⋯74T8−16⋯44p12T10+10⋯48p24T12−45886260248p36T14+p48T16 |
| 53 | 1−97731632312T2+51⋯92T4−18⋯08T6+47⋯10T8−18⋯08p12T10+51⋯92p24T12−97731632312p36T14+p48T16 |
| 59 | 1−68754072824T2+28⋯84T4−11⋯72T6+39⋯58T8−11⋯72p12T10+28⋯84p24T12−68754072824p36T14+p48T16 |
| 61 | (1+163738T+5375311858T2−12587109571985600T3−34867093543223492069pT4−12587109571985600p6T5+5375311858p12T6+163738p18T7+p24T8)2 |
| 67 | (1−856646T+496161770266T2−190187424030542330T3+64⋯22T4−190187424030542330p6T5+496161770266p12T6−856646p18T7+p24T8)2 |
| 71 | 1−212021007668T2+13⋯04T4−57⋯84T6+84⋯38T8−57⋯84p12T10+13⋯04p24T12−212021007668p36T14+p48T16 |
| 73 | (1+1094608T+746233393222T2+336788359861632640T3+13⋯03T4+336788359861632640p6T5+746233393222p12T6+1094608p18T7+p24T8)2 |
| 79 | (1+8398pT+858780911746T2+463539447756297070T3+30⋯54T4+463539447756297070p6T5+858780911746p12T6+8398p19T7+p24T8)2 |
| 83 | 1−1910425105592T2+16⋯44T4−92⋯80T6+35⋯62T8−92⋯80p12T10+16⋯44p24T12−1910425105592p36T14+p48T16 |
| 89 | 1−1054207551824T2+82⋯70T4−51⋯84T6+24⋯75T8−51⋯84p12T10+82⋯70p24T12−1054207551824p36T14+p48T16 |
| 97 | (1+1100032T+2005275894904T2+1141210218432366016T3+17⋯18T4+1141210218432366016p6T5+2005275894904p12T6+1100032p18T7+p24T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.60662838388509470817841173791, −4.39816369798921574547822711741, −4.30667027430073679896242956731, −4.30351383789941592818317926919, −4.14551393925702930196530321284, −4.06052551504018568920692979578, −3.69383235514998664572906287737, −3.66519497439467940766105822609, −3.28751230022939231324379122123, −3.12611661831867952698889134618, −2.96089421146667115527579611197, −2.83662686978823647414834873384, −2.48180395293667665606355664628, −2.37315005162079808384891436105, −2.21280817219030915462233519789, −1.74321159128271946207654877190, −1.73262750793074884281652303882, −1.57479375120172598624867436012, −1.19330644621618535124325887074, −1.19162100874893322881330966975, −1.09952539244804774506001404144, −0.873613194864486893900394988954, −0.46212977243488634455341763186, −0.41285624890765573214059246185, −0.07131499567096626553503045981,
0.07131499567096626553503045981, 0.41285624890765573214059246185, 0.46212977243488634455341763186, 0.873613194864486893900394988954, 1.09952539244804774506001404144, 1.19162100874893322881330966975, 1.19330644621618535124325887074, 1.57479375120172598624867436012, 1.73262750793074884281652303882, 1.74321159128271946207654877190, 2.21280817219030915462233519789, 2.37315005162079808384891436105, 2.48180395293667665606355664628, 2.83662686978823647414834873384, 2.96089421146667115527579611197, 3.12611661831867952698889134618, 3.28751230022939231324379122123, 3.66519497439467940766105822609, 3.69383235514998664572906287737, 4.06052551504018568920692979578, 4.14551393925702930196530321284, 4.30351383789941592818317926919, 4.30667027430073679896242956731, 4.39816369798921574547822711741, 4.60662838388509470817841173791
Plot not available for L-functions of degree greater than 10.