L(s) = 1 | − 12·3-s + 12·5-s − 14·7-s + 9·9-s − 88·11-s + 30·13-s − 144·15-s + 58·17-s − 190·19-s + 168·21-s − 184·23-s − 414·25-s + 432·27-s − 190·29-s − 60·31-s + 1.05e3·33-s − 168·35-s + 156·37-s − 360·39-s + 282·41-s − 810·43-s + 108·45-s + 564·47-s − 898·49-s − 696·51-s + 230·53-s − 1.05e3·55-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 1.07·5-s − 0.755·7-s + 1/3·9-s − 2.41·11-s + 0.640·13-s − 2.47·15-s + 0.827·17-s − 2.29·19-s + 1.74·21-s − 1.66·23-s − 3.31·25-s + 3.07·27-s − 1.21·29-s − 0.347·31-s + 5.57·33-s − 0.811·35-s + 0.693·37-s − 1.47·39-s + 1.07·41-s − 2.87·43-s + 0.357·45-s + 1.75·47-s − 2.61·49-s − 1.91·51-s + 0.596·53-s − 2.58·55-s + ⋯ |
Λ(s)=(=((248⋅238)s/2ΓC(s)8L(s)Λ(4−s)
Λ(s)=(=((248⋅238)s/2ΓC(s+3/2)8L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | (1+pT)8 |
good | 3 | 1+4pT+5p3T2+40p3T3+965p2T4+6244p2T5+371930T6+686036pT7+3831022pT8+686036p4T9+371930p6T10+6244p11T11+965p14T12+40p18T13+5p21T14+4p22T15+p24T16 |
| 5 | 1−12T+558T2−6792T3+171396T4−1905872T5+35327514T6−342929052T7+5210867942T8−342929052p3T9+35327514p6T10−1905872p9T11+171396p12T12−6792p15T13+558p18T14−12p21T15+p24T16 |
| 7 | 1+2pT+1094T2+3722pT3+831492T4+17743510T5+458102450T6+8894837758T7+172843238790T8+8894837758p3T9+458102450p6T10+17743510p9T11+831492p12T12+3722p16T13+1094p18T14+2p22T15+p24T16 |
| 11 | 1+8pT+8134T2+527068T3+29522140T4+1476743188T5+66227765058T6+2673749809776T7+103788190691478T8+2673749809776p3T9+66227765058p6T10+1476743188p9T11+29522140p12T12+527068p15T13+8134p18T14+8p22T15+p24T16 |
| 13 | 1−30T+8623T2−24962pT3+38745457T4−1778226588T5+118720437366T6−6007223069192T7+287733902451010T8−6007223069192p3T9+118720437366p6T10−1778226588p9T11+38745457p12T12−24962p16T13+8623p18T14−30p21T15+p24T16 |
| 17 | 1−58T+24714T2−739646T3+265388300T4−3013008610T5+1862751072702T6−3359705913894T7+10169183353995862T8−3359705913894p3T9+1862751072702p6T10−3013008610p9T11+265388300p12T12−739646p15T13+24714p18T14−58p21T15+p24T16 |
| 19 | 1+10pT+46416T2+5768430T3+878213356T4+86547684862T5+10282296471280T6+848607523793086T7+83599454050384390T8+848607523793086p3T9+10282296471280p6T10+86547684862p9T11+878213356p12T12+5768430p15T13+46416p18T14+10p22T15+p24T16 |
| 29 | 1+190T+81903T2+12668238T3+3348797321T4+443232784680T5+99790588535430T6+11545386938443436T7+86407098224178002pT8+11545386938443436p3T9+99790588535430p6T10+443232784680p9T11+3348797321p12T12+12668238p15T13+81903p18T14+190p21T15+p24T16 |
| 31 | 1+60T+88331T2−212924T3+3775918869T4−218356055120T5+126547839290226T6−9799382872505480T7+4033569334997275226T8−9799382872505480p3T9+126547839290226p6T10−218356055120p9T11+3775918869p12T12−212924p15T13+88331p18T14+60p21T15+p24T16 |
| 37 | 1−156T+305414T2−48304008T3+44269746164T4−6510880736624T5+3993208351902882T6−511794502952013804T7+24⋯30T8−511794502952013804p3T9+3993208351902882p6T10−6510880736624p9T11+44269746164p12T12−48304008p15T13+305414p18T14−156p21T15+p24T16 |
| 41 | 1−282T+406967T2−111531986T3+79032706225T4−19801930698600T5+9602070331297422T6−2091298025211225364T7+79⋯82T8−2091298025211225364p3T9+9602070331297422p6T10−19801930698600p9T11+79032706225p12T12−111531986p15T13+406967p18T14−282p21T15+p24T16 |
| 43 | 1+810T+748836T2+400852146T3+219302352916T4+88392716782050T5+35440160183076028T6+11264147007704519274T7+35⋯54T8+11264147007704519274p3T9+35440160183076028p6T10+88392716782050p9T11+219302352916p12T12+400852146p15T13+748836p18T14+810p21T15+p24T16 |
| 47 | 1−12pT+357203T2−119277468T3+57768525893T4−12628648199520T5+4563365674672178T6−578225878401858360T7+38⋯70T8−578225878401858360p3T9+4563365674672178p6T10−12628648199520p9T11+57768525893p12T12−119277468p15T13+357203p18T14−12p22T15+p24T16 |
| 53 | 1−230T+570128T2−141594314T3+128952985292T4−37826221869878T5+14782294503604016T6−6446592419167632138T7+14⋯70T8−6446592419167632138p3T9+14782294503604016p6T10−37826221869878p9T11+128952985292p12T12−141594314p15T13+570128p18T14−230p21T15+p24T16 |
| 59 | 1+1916T+2405664T2+2321229932T3+1839565138892T4+1249730100885324T5+747053166046109216T6+39⋯20T7+18⋯90T8+39⋯20p3T9+747053166046109216p6T10+1249730100885324p9T11+1839565138892p12T12+2321229932p15T13+2405664p18T14+1916p21T15+p24T16 |
| 61 | 1+22T+656584T2+56665610T3+289690058876T4+25759150848710T5+91312341450809528T6+7654640322361851626T7+23⋯26T8+7654640322361851626p3T9+91312341450809528p6T10+25759150848710p9T11+289690058876p12T12+56665610p15T13+656584p18T14+22p21T15+p24T16 |
| 67 | 1+2292T+3793886T2+4344144896T3+4198586189676T4+3337397232457784T5+2382188962605544170T6+14⋯60T7+86⋯26T8+14⋯60p3T9+2382188962605544170p6T10+3337397232457784p9T11+4198586189676p12T12+4344144896p15T13+3793886p18T14+2292p21T15+p24T16 |
| 71 | 1−2376T+3675615T2−4279744976T3+4188196909029T4−3572345035677032T5+2727549647711214498T6−18⋯76T7+11⋯18T8−18⋯76p3T9+2727549647711214498p6T10−3572345035677032p9T11+4188196909029p12T12−4279744976p15T13+3675615p18T14−2376p21T15+p24T16 |
| 73 | 1+630T+2074167T2+1112203230T3+2126075486833T4+984814771175032T5+1400980936204462734T6+55⋯32T7+64⋯82T8+55⋯32p3T9+1400980936204462734p6T10+984814771175032p9T11+2126075486833p12T12+1112203230p15T13+2074167p18T14+630p21T15+p24T16 |
| 79 | 1−892T+2843620T2−1648787116T3+3328960395652T4−1293342518366300T5+2388714781909334172T6−67⋯32T7+13⋯78T8−67⋯32p3T9+2388714781909334172p6T10−1293342518366300p9T11+3328960395652p12T12−1648787116p15T13+2843620p18T14−892p21T15+p24T16 |
| 83 | 1+2800T+6734734T2+11284901676T3+16191548396524T4+19398083944552692T5+20218543045915497978T6+18⋯52T7+14⋯06T8+18⋯52p3T9+20218543045915497978p6T10+19398083944552692p9T11+16191548396524p12T12+11284901676p15T13+6734734p18T14+2800p21T15+p24T16 |
| 89 | 1+308T+2580572T2+537416492T3+3737430388820T4+466567404321124T5+3957470808670947684T6+43⋯64T7+31⋯90T8+43⋯64p3T9+3957470808670947684p6T10+466567404321124p9T11+3737430388820p12T12+537416492p15T13+2580572p18T14+308p21T15+p24T16 |
| 97 | 1−854T+3132426T2−2694403618T3+5557873802604T4−4455992353790526T5+7190741008072039166T6−51⋯54T7+72⋯14T8−51⋯54p3T9+7190741008072039166p6T10−4455992353790526p9T11+5557873802604p12T12−2694403618p15T13+3132426p18T14−854p21T15+p24T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.03630209144009521237940898566, −3.92394145637932955475008160990, −3.76633788999028068553047269402, −3.68627005356804579590516419731, −3.67598911253509922370088794556, −3.61467878951172875445477524100, −3.37125560688354240068018535012, −3.35774937188101063063408846775, −3.15555996760764495784993465668, −2.72668353865807251308029044285, −2.69766523348999238617496922337, −2.60147672248414712687019702612, −2.54145687691683855120552076672, −2.50877504333493819021099835409, −2.36628810954434616002290239018, −2.33256478868911951244009084323, −1.97277089098738476305300643542, −1.80421188699432600531460994462, −1.67442640170556094134764104086, −1.49183817081434813619177605511, −1.41701300076627980877848852270, −1.26383031288071616136291189976, −1.25033350857530458615822580454, −0.954681742448365421501653938920, −0.62261733248286535705815709966, 0, 0, 0, 0, 0, 0, 0, 0,
0.62261733248286535705815709966, 0.954681742448365421501653938920, 1.25033350857530458615822580454, 1.26383031288071616136291189976, 1.41701300076627980877848852270, 1.49183817081434813619177605511, 1.67442640170556094134764104086, 1.80421188699432600531460994462, 1.97277089098738476305300643542, 2.33256478868911951244009084323, 2.36628810954434616002290239018, 2.50877504333493819021099835409, 2.54145687691683855120552076672, 2.60147672248414712687019702612, 2.69766523348999238617496922337, 2.72668353865807251308029044285, 3.15555996760764495784993465668, 3.35774937188101063063408846775, 3.37125560688354240068018535012, 3.61467878951172875445477524100, 3.67598911253509922370088794556, 3.68627005356804579590516419731, 3.76633788999028068553047269402, 3.92394145637932955475008160990, 4.03630209144009521237940898566
Plot not available for L-functions of degree greater than 10.