L(s) = 1 | − 10·4-s + 336·13-s + 13·16-s − 288·19-s − 424·25-s + 120·31-s + 592·37-s − 1.87e3·43-s − 3.36e3·52-s + 2.40e3·61-s − 300·64-s + 1.82e3·73-s + 2.88e3·76-s + 2.36e3·79-s + 5.71e3·97-s + 4.24e3·100-s − 5.40e3·103-s − 1.65e3·109-s − 5.78e3·121-s − 1.20e3·124-s + 127-s + 131-s + 137-s + 139-s − 5.92e3·148-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 5/4·4-s + 7.16·13-s + 0.203·16-s − 3.47·19-s − 3.39·25-s + 0.695·31-s + 2.63·37-s − 6.63·43-s − 8.96·52-s + 5.03·61-s − 0.585·64-s + 2.92·73-s + 4.34·76-s + 3.37·79-s + 5.97·97-s + 4.23·100-s − 5.16·103-s − 1.45·109-s − 4.34·121-s − 0.869·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 3.28·148-s + 0.000549·149-s + 0.000538·151-s + ⋯ |
Λ(s)=(=((324⋅716)s/2ΓC(s)8L(s)Λ(4−s)
Λ(s)=(=((324⋅716)s/2ΓC(s+3/2)8L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.714485622 |
L(21) |
≈ |
2.714485622 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+5pT2+87T4+65p4T6+167p6T8+65p10T10+87p12T12+5p19T14+p24T16 |
| 5 | 1+424T2+113862T4+21538016T6+3080570771T8+21538016p6T10+113862p12T12+424p18T14+p24T16 |
| 11 | 1+5784T2+14142406T4+20701768608T6+25999720964691T8+20701768608p6T10+14142406p12T12+5784p18T14+p24T16 |
| 13 | (1−168T+17116T2−1207896T3+64621222T4−1207896p3T5+17116p6T6−168p9T7+p12T8)2 |
| 17 | 1+4320T2+90997492T4+307024797600T6+3233455864654758T8+307024797600p6T10+90997492p12T12+4320p18T14+p24T16 |
| 19 | (1+144T+14886T2+829440T3+56352755T4+829440p3T5+14886p6T6+144p9T7+p12T8)2 |
| 23 | 1+37768T2+966746070T4+17415830892128T6+242639055368418659T8+17415830892128p6T10+966746070p12T12+37768p18T14+p24T16 |
| 29 | 1+75064T2+4197383004T4+150911401826504T6+4338189011053329830T8+150911401826504p6T10+4197383004p12T12+75064p18T14+p24T16 |
| 31 | (1−60T+72250T2−261480pT3+80919757pT4−261480p4T5+72250p6T6−60p9T7+p12T8)2 |
| 37 | (1−8pT+44614T2+138976pT3−2636743133T4+138976p4T5+44614p6T6−8p10T7+p12T8)2 |
| 41 | 1+388344T2+69574817686T4+7799366016841248T6+62⋯31T8+7799366016841248p6T10+69574817686p12T12+388344p18T14+p24T16 |
| 43 | (1+936T+590184T2+242030232T3+79565108834T4+242030232p3T5+590184p6T6+936p9T7+p12T8)2 |
| 47 | 1+539192T2+147167990020T4+25820308461522152T6+31⋯14T8+25820308461522152p6T10+147167990020p12T12+539192p18T14+p24T16 |
| 53 | 1+564888T2+122098902844T4+11434901409644904T6+73⋯66T8+11434901409644904p6T10+122098902844p12T12+564888p18T14+p24T16 |
| 59 | 1+502456T2+216666468900T4+63882710147039144T6+14⋯14T8+63882710147039144p6T10+216666468900p12T12+502456p18T14+p24T16 |
| 61 | (1−1200T+1249988T2−843411120T3+464858253798T4−843411120p3T5+1249988p6T6−1200p9T7+p12T8)2 |
| 67 | (1+1023396T2−24675840T3+433884187622T4−24675840p3T5+1023396p6T6+p12T8)2 |
| 71 | 1+1910344T2+1810571288406T4+1096791110591321888T6+46⋯91T8+1096791110591321888p6T10+1810571288406p12T12+1910344p18T14+p24T16 |
| 73 | (1−912T+1041832T2−557617680T3+474743673106T4−557617680p3T5+1041832p6T6−912p9T7+p12T8)2 |
| 79 | (1−1184T+2396136T2−1798718560T3+1877500132370T4−1798718560p3T5+2396136p6T6−1184p9T7+p12T8)2 |
| 83 | 1+3779800T2+6638776535772T4+7032576780729679400T6+49⋯98T8+7032576780729679400p6T10+6638776535772p12T12+3779800p18T14+p24T16 |
| 89 | 1+1909176T2+3175905142966T4+3100144053826523232T6+26⋯11T8+3100144053826523232p6T10+3175905142966p12T12+1909176p18T14+p24T16 |
| 97 | (1−2856T+5804884T2−7716365688T3+8573207370022T4−7716365688p3T5+5804884p6T6−2856p9T7+p12T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.85801123059411121913492777103, −3.67180858392766680597733582261, −3.49611404819188545812844493654, −3.48045965269665244402197762674, −3.37312515023666551480724375554, −3.04558551265308480324268362756, −2.86773863087654842400470117102, −2.80673665770956677217644193191, −2.70888079683286809722394627717, −2.39198215531027965805993533807, −2.23286718895847929345462738290, −2.13612829115830924689435886502, −2.11059585158939446179143385588, −1.69223889413001091209951861786, −1.64727491552508987929288088891, −1.56985479462041078611502291291, −1.55240959726617889010219230939, −1.38860969684012377389721046098, −1.19437958284839200176063101959, −0.907769866796201208928267673463, −0.63273476804702374096450144198, −0.58326202738954682314329749742, −0.49965696433510390071892428664, −0.47755916501800836198591919688, −0.07471588277330571986434297865,
0.07471588277330571986434297865, 0.47755916501800836198591919688, 0.49965696433510390071892428664, 0.58326202738954682314329749742, 0.63273476804702374096450144198, 0.907769866796201208928267673463, 1.19437958284839200176063101959, 1.38860969684012377389721046098, 1.55240959726617889010219230939, 1.56985479462041078611502291291, 1.64727491552508987929288088891, 1.69223889413001091209951861786, 2.11059585158939446179143385588, 2.13612829115830924689435886502, 2.23286718895847929345462738290, 2.39198215531027965805993533807, 2.70888079683286809722394627717, 2.80673665770956677217644193191, 2.86773863087654842400470117102, 3.04558551265308480324268362756, 3.37312515023666551480724375554, 3.48045965269665244402197762674, 3.49611404819188545812844493654, 3.67180858392766680597733582261, 3.85801123059411121913492777103
Plot not available for L-functions of degree greater than 10.