L(s) = 1 | + 8·3-s − 4·4-s − 6·5-s + 26·9-s − 4·11-s − 32·12-s − 48·15-s + 6·16-s + 16·17-s − 2·19-s + 24·20-s − 6·23-s + 25-s + 36·27-s − 6·29-s − 6·31-s + 4·32-s − 32·33-s − 104·36-s + 8·41-s + 2·43-s + 16·44-s − 156·45-s − 30·47-s + 48·48-s + 128·51-s − 14·53-s + ⋯ |
L(s) = 1 | + 4.61·3-s − 2·4-s − 2.68·5-s + 26/3·9-s − 1.20·11-s − 9.23·12-s − 12.3·15-s + 3/2·16-s + 3.88·17-s − 0.458·19-s + 5.36·20-s − 1.25·23-s + 1/5·25-s + 6.92·27-s − 1.11·29-s − 1.07·31-s + 0.707·32-s − 5.57·33-s − 17.3·36-s + 1.24·41-s + 0.304·43-s + 2.41·44-s − 23.2·45-s − 4.37·47-s + 6.92·48-s + 17.9·51-s − 1.92·53-s + ⋯ |
Λ(s)=(=((712⋅1312)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((712⋅1312)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1+p2T2+5pT4−p2T5+11pT6−p3T7+5p3T8+p6T10+p6T12 |
| 3 | 1−8T+38T2−44pT3+121pT4−820T5+1550T6−820pT7+121p3T8−44p4T9+38p4T10−8p5T11+p6T12 |
| 5 | 1+6T+7pT2+126T3+444T4+1166T5+2971T6+1166pT7+444p2T8+126p3T9+7p5T10+6p5T11+p6T12 |
| 11 | 1+4T+28T2+64T3+329T4+384T5+2562T6+384pT7+329p2T8+64p3T9+28p4T10+4p5T11+p6T12 |
| 17 | 1−16T+158T2−1036T3+5351T4−22924T5+95142T6−22924pT7+5351p2T8−1036p3T9+158p4T10−16p5T11+p6T12 |
| 19 | 1+2T+97T2+174T3+4206T4+6314T5+103439T6+6314pT7+4206p2T8+174p3T9+97p4T10+2p5T11+p6T12 |
| 23 | 1+6T+101T2+418T3+4362T4+602pT5+5159pT6+602p2T7+4362p2T8+418p3T9+101p4T10+6p5T11+p6T12 |
| 29 | 1+6T+141T2+602T3+8386T4+27374T5+298533T6+27374pT7+8386p2T8+602p3T9+141p4T10+6p5T11+p6T12 |
| 31 | 1+6T+71T2+422T3+4336T4+20462T5+147703T6+20462pT7+4336p2T8+422p3T9+71p4T10+6p5T11+p6T12 |
| 37 | 1+140T2−236T3+8777T4−25480T5+367738T6−25480pT7+8777p2T8−236p3T9+140p4T10+p6T12 |
| 41 | 1−8T+126T2−672T3+7255T4−35160T5+337924T6−35160pT7+7255p2T8−672p3T9+126p4T10−8p5T11+p6T12 |
| 43 | 1−2T+97T2−618T3+6618T4−32018T5+404609T6−32018pT7+6618p2T8−618p3T9+97p4T10−2p5T11+p6T12 |
| 47 | 1+30T+497T2+5570T3+47934T4+346670T5+2382079T6+346670pT7+47934p2T8+5570p3T9+497p4T10+30p5T11+p6T12 |
| 53 | 1+14T+281T2+3030T3+35490T4+288526T5+2479717T6+288526pT7+35490p2T8+3030p3T9+281p4T10+14p5T11+p6T12 |
| 59 | 1+24T+500T2+7036T3+85435T4+826892T5+7012620T6+826892pT7+85435p2T8+7036p3T9+500p4T10+24p5T11+p6T12 |
| 61 | 1+120T2+112T3+12043T4−272T5+813584T6−272pT7+12043p2T8+112p3T9+120p4T10+p6T12 |
| 67 | 1+16T+6pT2+4560T3+65351T4+561152T5+5755516T6+561152pT7+65351p2T8+4560p3T9+6p5T10+16p5T11+p6T12 |
| 71 | 1+8T+110T2+984T3+19145T4+111980T5+1119230T6+111980pT7+19145p2T8+984p3T9+110p4T10+8p5T11+p6T12 |
| 73 | 1−6T+197T2−1382T3+21574T4−165022T5+1685555T6−165022pT7+21574p2T8−1382p3T9+197p4T10−6p5T11+p6T12 |
| 79 | 1+22T+409T2+5518T3+61946T4+630742T5+5676321T6+630742pT7+61946p2T8+5518p3T9+409p4T10+22p5T11+p6T12 |
| 83 | 1+50T+1439T2+28742T3+5324pT4+5421474T5+54504063T6+5421474pT7+5324p3T8+28742p3T9+1439p4T10+50p5T11+p6T12 |
| 89 | 1+26T+665T2+10382T3+156398T4+1742290T5+18723811T6+1742290pT7+156398p2T8+10382p3T9+665p4T10+26p5T11+p6T12 |
| 97 | 1−14T+321T2−3170T3+53038T4−457742T5+6291427T6−457742pT7+53038p2T8−3170p3T9+321p4T10−14p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.36101440480386101698805551694, −3.95665515144764562722834729320, −3.90337791653529846972099510917, −3.87974589592575167622038733693, −3.77049180114536768141144197617, −3.74938636099151667818091477826, −3.59438862622294930673654970945, −3.33537730490894149019626877718, −3.24110744487946503093911134921, −3.08885952624629299592861918305, −3.05611024211759571866284408047, −3.04706319279418666703126649155, −2.85310698463864203488547050870, −2.82310046780077232960728487586, −2.69222049246310760348563700349, −2.33577796029993186202790757595, −2.26041625959125089347088584327, −2.22780521015848868957897687334, −1.87706057943070898978876178820, −1.58533235697894651083806206613, −1.54946450792298844460592020265, −1.54068681717765659733519646889, −1.22397620654511958981845069706, −1.21399960076514160510021024523, −0.861335467438693055237076129701, 0, 0, 0, 0, 0, 0,
0.861335467438693055237076129701, 1.21399960076514160510021024523, 1.22397620654511958981845069706, 1.54068681717765659733519646889, 1.54946450792298844460592020265, 1.58533235697894651083806206613, 1.87706057943070898978876178820, 2.22780521015848868957897687334, 2.26041625959125089347088584327, 2.33577796029993186202790757595, 2.69222049246310760348563700349, 2.82310046780077232960728487586, 2.85310698463864203488547050870, 3.04706319279418666703126649155, 3.05611024211759571866284408047, 3.08885952624629299592861918305, 3.24110744487946503093911134921, 3.33537730490894149019626877718, 3.59438862622294930673654970945, 3.74938636099151667818091477826, 3.77049180114536768141144197617, 3.87974589592575167622038733693, 3.90337791653529846972099510917, 3.95665515144764562722834729320, 4.36101440480386101698805551694
Plot not available for L-functions of degree greater than 10.