L(s) = 1 | + 6·2-s + 18·4-s + 6·7-s + 36·8-s − 18·11-s + 36·14-s + 54·16-s + 6·17-s − 12·19-s − 108·22-s + 18·23-s + 9·27-s + 108·28-s − 21·29-s − 3·31-s + 69·32-s + 36·34-s + 6·37-s − 72·38-s − 18·41-s − 6·43-s − 324·44-s + 108·46-s − 6·47-s + 12·49-s + 48·53-s + 54·54-s + ⋯ |
L(s) = 1 | + 4.24·2-s + 9·4-s + 2.26·7-s + 12.7·8-s − 5.42·11-s + 9.62·14-s + 27/2·16-s + 1.45·17-s − 2.75·19-s − 23.0·22-s + 3.75·23-s + 1.73·27-s + 20.4·28-s − 3.89·29-s − 0.538·31-s + 12.1·32-s + 6.17·34-s + 0.986·37-s − 11.6·38-s − 2.81·41-s − 0.914·43-s − 48.8·44-s + 15.9·46-s − 0.875·47-s + 12/7·49-s + 6.59·53-s + 7.34·54-s + ⋯ |
Λ(s)=(=((318⋅512)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((318⋅512)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
43.89641858 |
L(21) |
≈ |
43.89641858 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−p2T3+p3T6 |
| 5 | 1 |
good | 2 | 1−3pT+9pT2−9p2T3+27pT4−69T5+91T6−69pT7+27p3T8−9p5T9+9p5T10−3p6T11+p6T12 |
| 7 | 1−6T+24T2−64T3+108T4−108T5−27T6−108pT7+108p2T8−64p3T9+24p4T10−6p5T11+p6T12 |
| 11 | 1+18T+135T2+513T3+675T4−3033T5−18422T6−3033pT7+675p2T8+513p3T9+135p4T10+18p5T11+p6T12 |
| 13 | 1−9T2−43T3−171T4+639T5+3702T6+639pT7−171p2T8−43p3T9−9p4T10+p6T12 |
| 17 | 1−6T−24T2+54T3+1338T4−1914T5−18929T6−1914pT7+1338p2T8+54p3T9−24p4T10−6p5T11+p6T12 |
| 19 | 1+12T+51T2+188T3+1314T4+5076T5+12699T6+5076pT7+1314p2T8+188p3T9+51p4T10+12p5T11+p6T12 |
| 23 | 1−18T+198T2−72pT3+11520T4−67716T5+345961T6−67716pT7+11520p2T8−72p4T9+198p4T10−18p5T11+p6T12 |
| 29 | 1+21T+207T2+1125T3+1890T4−22776T5−210023T6−22776pT7+1890p2T8+1125p3T9+207p4T10+21p5T11+p6T12 |
| 31 | 1+3T+24T2+80T3+423T4−4653T5−5787T6−4653pT7+423p2T8+80p3T9+24p4T10+3p5T11+p6T12 |
| 37 | 1−6T−48T2+206T3+1818T4−738T5−83025T6−738pT7+1818p2T8+206p3T9−48p4T10−6p5T11+p6T12 |
| 41 | 1+18T+171T2+1143T3+9009T4+79119T5+597574T6+79119pT7+9009p2T8+1143p3T9+171p4T10+18p5T11+p6T12 |
| 43 | 1+6T+156T2+905T3+13329T4+66195T5+704013T6+66195pT7+13329p2T8+905p3T9+156p4T10+6p5T11+p6T12 |
| 47 | 1+6T−621T3−2439T4+6873T5+245629T6+6873pT7−2439p2T8−621p3T9+6p5T11+p6T12 |
| 53 | (1−24T+330T2−2871T3+330pT4−24p2T5+p3T6)2 |
| 59 | 1+144T2+576T3+144pT4+97596T5+406765T6+97596pT7+144p3T8+576p3T9+144p4T10+p6T12 |
| 61 | 1−36T+756T2−190pT3+141336T4−1424232T5+12082719T6−1424232pT7+141336p2T8−190p4T9+756p4T10−36p5T11+p6T12 |
| 67 | 1−18T+234T2−2860T3+30024T4−262980T5+2254197T6−262980pT7+30024p2T8−2860p3T9+234p4T10−18p5T11+p6T12 |
| 71 | 1−3T−150T2−63T3+13371T4+19698T5−1081649T6+19698pT7+13371p2T8−63p3T9−150p4T10−3p5T11+p6T12 |
| 73 | 1+6T−186T2−418T3+27828T4+31752T5−2245917T6+31752pT7+27828p2T8−418p3T9−186p4T10+6p5T11+p6T12 |
| 79 | 1+12T+204T2+2915T3+31545T4+326493T5+3330513T6+326493pT7+31545p2T8+2915p3T9+204p4T10+12p5T11+p6T12 |
| 83 | 1−18T−72T2+3609T3−20907T4−178965T5+3381445T6−178965pT7−20907p2T8+3609p3T9−72p4T10−18p5T11+p6T12 |
| 89 | 1−3T−186T2+585T3+18915T4−33708T5−1703351T6−33708pT7+18915p2T8+585p3T9−186p4T10−3p5T11+p6T12 |
| 97 | 1−3T−42T2+1904T3−7479T4−60777T5+2561289T6−60777pT7−7479p2T8+1904p3T9−42p4T10−3p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.35485562563716158603113467226, −5.30966986742205641358240483983, −5.14516272183433376460249677986, −5.02041862030733594152870550675, −5.01371616124218810612299370834, −4.94934747095947924249752960568, −4.70309415865211164949791064397, −4.57355598820358008491044977073, −4.35337154258135707798419040943, −4.24213228907600621135750554879, −3.73206515307309049690443858974, −3.72529039646307801446107936313, −3.48430748220785210620397971537, −3.45829288065826710324307098404, −3.35693026671192425824738746930, −2.92924545213226361576612813480, −2.65024887684641983447561909864, −2.52839805020763235455903558379, −2.30829941676216497058240199911, −2.29294713796537206193624710606, −2.01852628781566488668008560491, −1.96743743901241239253370325181, −1.34166349132634338594485166629, −0.76317113316738554600419595630, −0.56867753597151268684574138849,
0.56867753597151268684574138849, 0.76317113316738554600419595630, 1.34166349132634338594485166629, 1.96743743901241239253370325181, 2.01852628781566488668008560491, 2.29294713796537206193624710606, 2.30829941676216497058240199911, 2.52839805020763235455903558379, 2.65024887684641983447561909864, 2.92924545213226361576612813480, 3.35693026671192425824738746930, 3.45829288065826710324307098404, 3.48430748220785210620397971537, 3.72529039646307801446107936313, 3.73206515307309049690443858974, 4.24213228907600621135750554879, 4.35337154258135707798419040943, 4.57355598820358008491044977073, 4.70309415865211164949791064397, 4.94934747095947924249752960568, 5.01371616124218810612299370834, 5.02041862030733594152870550675, 5.14516272183433376460249677986, 5.30966986742205641358240483983, 5.35485562563716158603113467226
Plot not available for L-functions of degree greater than 10.