L(s) = 1 | − 2-s − 2·3-s + 2·4-s + 2·5-s + 2·6-s − 8-s + 3·9-s − 2·10-s − 2·11-s − 4·12-s − 6·13-s − 4·15-s + 3·16-s + 4·17-s − 3·18-s − 4·19-s + 4·20-s + 2·22-s − 10·23-s + 2·24-s + 12·25-s + 6·26-s − 2·27-s + 48·29-s + 4·30-s − 4·31-s − 2·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s + 4-s + 0.894·5-s + 0.816·6-s − 0.353·8-s + 9-s − 0.632·10-s − 0.603·11-s − 1.15·12-s − 1.66·13-s − 1.03·15-s + 3/4·16-s + 0.970·17-s − 0.707·18-s − 0.917·19-s + 0.894·20-s + 0.426·22-s − 2.08·23-s + 0.408·24-s + 12/5·25-s + 1.17·26-s − 0.384·27-s + 8.91·29-s + 0.730·30-s − 0.718·31-s − 0.353·32-s + ⋯ |
Λ(s)=(=((712⋅136)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((712⋅136)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.431586502 |
L(21) |
≈ |
3.431586502 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | (1+T)6 |
good | 2 | 1+T−T2−pT3−pT4+p3T6−p3T8−p4T9−p4T10+p5T11+p6T12 |
| 3 | 1+2T+T2−2T3−8T4−2pT5+7T6−2p2T7−8p2T8−2p3T9+p4T10+2p5T11+p6T12 |
| 5 | 1−2T−8T2+12T3+48T4−26T5−246T6−26pT7+48p2T8+12p3T9−8p4T10−2p5T11+p6T12 |
| 11 | 1+2T−23T2−18T3+360T4+26T5−4545T6+26pT7+360p2T8−18p3T9−23p4T10+2p5T11+p6T12 |
| 17 | 1−4T−25T2+116T3+424T4−1320T5−3775T6−1320pT7+424p2T8+116p3T9−25p4T10−4p5T11+p6T12 |
| 19 | 1+4T−42T2−64T3+1670T4+1212T5−34070T6+1212pT7+1670p2T8−64p3T9−42p4T10+4p5T11+p6T12 |
| 23 | 1+10T+30T2+52T3+50T4−4230T5−36290T6−4230pT7+50p2T8+52p3T9+30p4T10+10p5T11+p6T12 |
| 29 | (1−24T+272T2−1846T3+272pT4−24p2T5+p3T6)2 |
| 31 | 1+4T−58T2−232T3+2126T4+5028T5−55854T6+5028pT7+2126p2T8−232p3T9−58p4T10+4p5T11+p6T12 |
| 37 | 1−53T2−248T3+848T4+6572T5+12749T6+6572pT7+848p2T8−248p3T9−53p4T10+p6T12 |
| 41 | (1+2T+95T2+172T3+95pT4+2p2T5+p3T6)2 |
| 43 | (1−10T+58T2−232T3+58pT4−10p2T5+p3T6)2 |
| 47 | 1+8T+2T2+80T3−734T4−16056T5−71134T6−16056pT7−734p2T8+80p3T9+2p4T10+8p5T11+p6T12 |
| 53 | 1+8T−60T2−748T3+1844T4+25200T5+59950T6+25200pT7+1844p2T8−748p3T9−60p4T10+8p5T11+p6T12 |
| 59 | 1+4T−5T2+516T3+66T4−524T5+375699T6−524pT7+66p2T8+516p3T9−5p4T10+4p5T11+p6T12 |
| 61 | (1+2T−57T2+2pT3+p2T4)3 |
| 67 | 1−12T+pT2+340T3−6814T4+21284T5−42709T6+21284pT7−6814p2T8+340p3T9+p5T10−12p5T11+p6T12 |
| 71 | (1+6T+191T2+868T3+191pT4+6p2T5+p3T6)2 |
| 73 | 1+10T−20T2−1172T3−6220T4+20410T5+600530T6+20410pT7−6220p2T8−1172p3T9−20p4T10+10p5T11+p6T12 |
| 79 | 1−14T−46T2+1004T3+8702T4−83502T5−41298T6−83502pT7+8702p2T8+1004p3T9−46p4T10−14p5T11+p6T12 |
| 83 | (1−12T−22T2+1276T3−22pT4−12p2T5+p3T6)2 |
| 89 | 1−2T−168T2−476T3+14408T4+56742T5−1250366T6+56742pT7+14408p2T8−476p3T9−168p4T10−2p5T11+p6T12 |
| 97 | (1−10T+320T2−1962T3+320pT4−10p2T5+p3T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.78675076298302276214829733258, −5.46355984273638963438637246969, −5.31206813958636241939650218628, −5.18039264175491817948144228020, −4.84146415692001326045193405397, −4.75908726347504027279103993852, −4.70573741139571697393734194802, −4.57077906792325200306757563257, −4.53804492631684499752186101669, −4.21252836670046350555412295825, −4.15657259153233308153630103206, −3.44331498491179379180998787756, −3.30609991253543062908775183409, −3.29570918993894927309806988445, −2.98731211646972824621625050261, −2.84483254243896179756225455504, −2.70773884382702482345612865720, −2.22097348516636377598838239691, −2.18656468621651464154888870987, −2.13434543047120394955402936252, −1.75351923697494255766619066191, −1.17963907157478417566298123936, −0.983812211928118496442745611831, −0.833195135585768240361321609726, −0.56694498645074791712338353965,
0.56694498645074791712338353965, 0.833195135585768240361321609726, 0.983812211928118496442745611831, 1.17963907157478417566298123936, 1.75351923697494255766619066191, 2.13434543047120394955402936252, 2.18656468621651464154888870987, 2.22097348516636377598838239691, 2.70773884382702482345612865720, 2.84483254243896179756225455504, 2.98731211646972824621625050261, 3.29570918993894927309806988445, 3.30609991253543062908775183409, 3.44331498491179379180998787756, 4.15657259153233308153630103206, 4.21252836670046350555412295825, 4.53804492631684499752186101669, 4.57077906792325200306757563257, 4.70573741139571697393734194802, 4.75908726347504027279103993852, 4.84146415692001326045193405397, 5.18039264175491817948144228020, 5.31206813958636241939650218628, 5.46355984273638963438637246969, 5.78675076298302276214829733258
Plot not available for L-functions of degree greater than 10.