Properties

Label 12-570e6-1.1-c1e6-0-3
Degree $12$
Conductor $3.430\times 10^{16}$
Sign $1$
Analytic cond. $8890.20$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3·3-s + 3·4-s − 3·5-s + 9·6-s + 2·7-s + 2·8-s + 3·9-s + 9·10-s + 8·11-s − 9·12-s − 13-s − 6·14-s + 9·15-s − 9·16-s + 4·17-s − 9·18-s − 2·19-s − 9·20-s − 6·21-s − 24·22-s + 4·23-s − 6·24-s + 3·25-s + 3·26-s + 2·27-s + 6·28-s + ⋯
L(s)  = 1  − 2.12·2-s − 1.73·3-s + 3/2·4-s − 1.34·5-s + 3.67·6-s + 0.755·7-s + 0.707·8-s + 9-s + 2.84·10-s + 2.41·11-s − 2.59·12-s − 0.277·13-s − 1.60·14-s + 2.32·15-s − 9/4·16-s + 0.970·17-s − 2.12·18-s − 0.458·19-s − 2.01·20-s − 1.30·21-s − 5.11·22-s + 0.834·23-s − 1.22·24-s + 3/5·25-s + 0.588·26-s + 0.384·27-s + 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(8890.20\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{570} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1362394389\)
\(L(\frac12)\) \(\approx\) \(0.1362394389\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T + T^{2} )^{3} \)
3 \( ( 1 + T + T^{2} )^{3} \)
5 \( ( 1 + T + T^{2} )^{3} \)
19 \( 1 + 2 T + 8 T^{2} + 140 T^{3} + 8 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
good7 \( ( 1 - T + 2 T^{2} + 17 T^{3} + 2 p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
11 \( ( 1 - 4 T + 2 p T^{2} - 82 T^{3} + 2 p^{2} T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 + T - 22 T^{2} - 45 T^{3} + 196 T^{4} + 353 T^{5} - 1496 T^{6} + 353 p T^{7} + 196 p^{2} T^{8} - 45 p^{3} T^{9} - 22 p^{4} T^{10} + p^{5} T^{11} + p^{6} T^{12} \)
17 \( 1 - 4 T + 15 T^{2} - 164 T^{3} + 304 T^{4} - 940 T^{5} + 11585 T^{6} - 940 p T^{7} + 304 p^{2} T^{8} - 164 p^{3} T^{9} + 15 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 - 4 T - 42 T^{2} + 124 T^{3} + 1318 T^{4} - 1768 T^{5} - 29818 T^{6} - 1768 p T^{7} + 1318 p^{2} T^{8} + 124 p^{3} T^{9} - 42 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 + 6 T + 51 T^{2} + 582 T^{3} + 2676 T^{4} + 15306 T^{5} + 124873 T^{6} + 15306 p T^{7} + 2676 p^{2} T^{8} + 582 p^{3} T^{9} + 51 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
31 \( ( 1 - T + 77 T^{2} - 70 T^{3} + 77 p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( ( 1 + T + p T^{2} )^{6} \)
41 \( 1 + 8 T + 66 T^{2} + 748 T^{3} + 3142 T^{4} + 15524 T^{5} + 176018 T^{6} + 15524 p T^{7} + 3142 p^{2} T^{8} + 748 p^{3} T^{9} + 66 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} \)
43 \( ( 1 - 14 T + 48 T^{2} + 44 T^{3} + 48 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} )( 1 + 25 T + 318 T^{2} + 2543 T^{3} + 318 p T^{4} + 25 p^{2} T^{5} + p^{3} T^{6} ) \)
47 \( 1 - 57 T^{2} + 288 T^{3} + 570 T^{4} - 8208 T^{5} + 75679 T^{6} - 8208 p T^{7} + 570 p^{2} T^{8} + 288 p^{3} T^{9} - 57 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 + 18 T + 78 T^{2} + 396 T^{3} + 11190 T^{4} + 77130 T^{5} + 244546 T^{6} + 77130 p T^{7} + 11190 p^{2} T^{8} + 396 p^{3} T^{9} + 78 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12} \)
59 \( ( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{3} \)
61 \( 1 - 3 T - 156 T^{2} + 233 T^{3} + 16068 T^{4} - 10833 T^{5} - 1107756 T^{6} - 10833 p T^{7} + 16068 p^{2} T^{8} + 233 p^{3} T^{9} - 156 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
67 \( 1 + 15 T - 30 T^{2} - 199 T^{3} + 17760 T^{4} + 67845 T^{5} - 717030 T^{6} + 67845 p T^{7} + 17760 p^{2} T^{8} - 199 p^{3} T^{9} - 30 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \)
71 \( 1 - 4 T - 147 T^{2} + 52 T^{3} + 13588 T^{4} + 15044 T^{5} - 1127329 T^{6} + 15044 p T^{7} + 13588 p^{2} T^{8} + 52 p^{3} T^{9} - 147 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
73 \( 1 - 21 T + 96 T^{2} - 685 T^{3} + 24960 T^{4} - 185739 T^{5} + 497520 T^{6} - 185739 p T^{7} + 24960 p^{2} T^{8} - 685 p^{3} T^{9} + 96 p^{4} T^{10} - 21 p^{5} T^{11} + p^{6} T^{12} \)
79 \( 1 - 7 T - 188 T^{2} + 529 T^{3} + 29788 T^{4} - 517 p T^{5} - 2560246 T^{6} - 517 p^{2} T^{7} + 29788 p^{2} T^{8} + 529 p^{3} T^{9} - 188 p^{4} T^{10} - 7 p^{5} T^{11} + p^{6} T^{12} \)
83 \( ( 1 - 2 T - 11 T^{2} + 700 T^{3} - 11 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
89 \( 1 - 18 T - 30 T^{2} + 252 T^{3} + 34194 T^{4} - 180810 T^{5} - 1340246 T^{6} - 180810 p T^{7} + 34194 p^{2} T^{8} + 252 p^{3} T^{9} - 30 p^{4} T^{10} - 18 p^{5} T^{11} + p^{6} T^{12} \)
97 \( 1 + 38 T + 691 T^{2} + 10246 T^{3} + 144976 T^{4} + 1721978 T^{5} + 17584733 T^{6} + 1721978 p T^{7} + 144976 p^{2} T^{8} + 10246 p^{3} T^{9} + 691 p^{4} T^{10} + 38 p^{5} T^{11} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.84724639671609141235556750368, −5.45861496888201392697396083435, −5.42581857915029863363039621331, −5.22921847067146881927778208427, −5.18898059335537465772979616760, −4.78779530973849943736140619428, −4.65890364921107363387361536416, −4.64553891232165129010247684664, −4.60957886250076402470296510932, −4.09544920706208513110676909484, −3.88521040152354049470341311453, −3.85782080883952137545618920449, −3.78533305678074866795692812419, −3.25912126524700729081238272962, −3.21806806561865277888249073568, −3.05522729702547126740265913963, −2.89313890733752623155197828739, −2.08356343328214515761324607637, −1.98650257231178791900449618424, −1.89313020539395579710417180617, −1.36904812255625649335173497476, −1.22497020132138290534711062934, −1.22474612823224894079313070575, −0.47339575712439619994760099565, −0.27551028371785389513908713058, 0.27551028371785389513908713058, 0.47339575712439619994760099565, 1.22474612823224894079313070575, 1.22497020132138290534711062934, 1.36904812255625649335173497476, 1.89313020539395579710417180617, 1.98650257231178791900449618424, 2.08356343328214515761324607637, 2.89313890733752623155197828739, 3.05522729702547126740265913963, 3.21806806561865277888249073568, 3.25912126524700729081238272962, 3.78533305678074866795692812419, 3.85782080883952137545618920449, 3.88521040152354049470341311453, 4.09544920706208513110676909484, 4.60957886250076402470296510932, 4.64553891232165129010247684664, 4.65890364921107363387361536416, 4.78779530973849943736140619428, 5.18898059335537465772979616760, 5.22921847067146881927778208427, 5.42581857915029863363039621331, 5.45861496888201392697396083435, 5.84724639671609141235556750368

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.