L(s) = 1 | − 2·3-s + 6·5-s − 4·7-s − 5·9-s − 12·15-s − 8·17-s − 12·19-s + 8·21-s − 8·23-s + 21·25-s + 10·27-s − 16·29-s − 4·31-s − 24·35-s + 8·37-s − 32·41-s + 4·43-s − 30·45-s − 6·47-s − 5·49-s + 16·51-s + 8·53-s + 24·57-s + 4·59-s − 16·61-s + 20·63-s − 2·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 2.68·5-s − 1.51·7-s − 5/3·9-s − 3.09·15-s − 1.94·17-s − 2.75·19-s + 1.74·21-s − 1.66·23-s + 21/5·25-s + 1.92·27-s − 2.97·29-s − 0.718·31-s − 4.05·35-s + 1.31·37-s − 4.99·41-s + 0.609·43-s − 4.47·45-s − 0.875·47-s − 5/7·49-s + 2.24·51-s + 1.09·53-s + 3.17·57-s + 0.520·59-s − 2.04·61-s + 2.51·63-s − 0.244·67-s + ⋯ |
Λ(s)=(=((218⋅56⋅1112)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅56⋅1112)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | (1−T)6 |
| 11 | 1 |
good | 3 | 1+2T+p2T2+2p2T3+50T4+82T5+181T6+82pT7+50p2T8+2p5T9+p6T10+2p5T11+p6T12 |
| 7 | 1+4T+3pT2+8pT3+218T4+636T5+1993T6+636pT7+218p2T8+8p4T9+3p5T10+4p5T11+p6T12 |
| 13 | 1+46T2+16T3+935T4+560T5+13172T6+560pT7+935p2T8+16p3T9+46p4T10+p6T12 |
| 17 | 1+8T+86T2+488T3+191pT4+14352T5+70772T6+14352pT7+191p3T8+488p3T9+86p4T10+8p5T11+p6T12 |
| 19 | 1+12T+142T2+1028T3+6983T4+36232T5+176372T6+36232pT7+6983p2T8+1028p3T9+142p4T10+12p5T11+p6T12 |
| 23 | 1+8T+78T2+464T3+3647T4+17448T5+99796T6+17448pT7+3647p2T8+464p3T9+78p4T10+8p5T11+p6T12 |
| 29 | 1+16T+158T2+976T3+3655T4+5856T5−10876T6+5856pT7+3655p2T8+976p3T9+158p4T10+16p5T11+p6T12 |
| 31 | 1+4T+106T2+580T3+5471T4+35008T5+194684T6+35008pT7+5471p2T8+580p3T9+106p4T10+4p5T11+p6T12 |
| 37 | 1−8T+142T2−872T3+9911T4−52016T5+449252T6−52016pT7+9911p2T8−872p3T9+142p4T10−8p5T11+p6T12 |
| 41 | 1+32T+597T2+7760T3+78494T4+647040T5+4497049T6+647040pT7+78494p2T8+7760p3T9+597p4T10+32p5T11+p6T12 |
| 43 | 1−4T+157T2−160T3+9938T4+11060T5+442193T6+11060pT7+9938p2T8−160p3T9+157p4T10−4p5T11+p6T12 |
| 47 | 1+6T+217T2+1142T3+22146T4+96502T5+1330941T6+96502pT7+22146p2T8+1142p3T9+217p4T10+6p5T11+p6T12 |
| 53 | 1−8T+142T2−624T3+8055T4−33704T5+443124T6−33704pT7+8055p2T8−624p3T9+142p4T10−8p5T11+p6T12 |
| 59 | 1−4T+106T2−804T3+11415T4−59440T5+798588T6−59440pT7+11415p2T8−804p3T9+106p4T10−4p5T11+p6T12 |
| 61 | 1+16T+245T2+2240T3+24374T4+199632T5+1856313T6+199632pT7+24374p2T8+2240p3T9+245p4T10+16p5T11+p6T12 |
| 67 | 1+2T+49T2+458T3+11018T4+49970T5+322277T6+49970pT7+11018p2T8+458p3T9+49p4T10+2p5T11+p6T12 |
| 71 | 1+28T+546T2+7900T3+98591T4+1012032T5+9200236T6+1012032pT7+98591p2T8+7900p3T9+546p4T10+28p5T11+p6T12 |
| 73 | 1+16T+246T2+2768T3+28991T4+286368T5+2601844T6+286368pT7+28991p2T8+2768p3T9+246p4T10+16p5T11+p6T12 |
| 79 | 1+342T2+288T3+55791T4+50976T5+5551220T6+50976pT7+55791p2T8+288p3T9+342p4T10+p6T12 |
| 83 | 1+12T+210T2+1028T3+22311T4+168072T5+2881772T6+168072pT7+22311p2T8+1028p3T9+210p4T10+12p5T11+p6T12 |
| 89 | 1−18T+253T2−1798T3+8058T4+72934T5−1088091T6+72934pT7+8058p2T8−1798p3T9+253p4T10−18p5T11+p6T12 |
| 97 | 1+342T2+1080T3+57231T4+248616T5+6595652T6+248616pT7+57231p2T8+1080p3T9+342p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.82940116053496188437579965137, −4.38697346658244414764206754907, −4.35028037059269154736930087422, −4.19144598231374951704796550641, −4.17402206086602341137051794799, −4.06553203345657894910602162357, −3.99280257085995928080592881090, −3.52062240393997614157804764761, −3.37222660974894868823018848867, −3.32921233561117657834995531154, −3.21061711648312574027150669985, −3.16405449445578732334569760020, −3.10575758315605535131095567112, −2.59117423742805720460575045348, −2.57125622261674315951456214531, −2.45450545892824961281589036281, −2.17253712569091146842021731432, −2.16757284309816279939303211315, −2.15175402636610473321615796557, −1.88672802065170928107240877298, −1.71710013420403844786507845850, −1.50195126474200778674830870961, −1.44676036649645738241952603334, −1.12300771710951077959255575604, −1.01155350655029705685685737547, 0, 0, 0, 0, 0, 0,
1.01155350655029705685685737547, 1.12300771710951077959255575604, 1.44676036649645738241952603334, 1.50195126474200778674830870961, 1.71710013420403844786507845850, 1.88672802065170928107240877298, 2.15175402636610473321615796557, 2.16757284309816279939303211315, 2.17253712569091146842021731432, 2.45450545892824961281589036281, 2.57125622261674315951456214531, 2.59117423742805720460575045348, 3.10575758315605535131095567112, 3.16405449445578732334569760020, 3.21061711648312574027150669985, 3.32921233561117657834995531154, 3.37222660974894868823018848867, 3.52062240393997614157804764761, 3.99280257085995928080592881090, 4.06553203345657894910602162357, 4.17402206086602341137051794799, 4.19144598231374951704796550641, 4.35028037059269154736930087422, 4.38697346658244414764206754907, 4.82940116053496188437579965137
Plot not available for L-functions of degree greater than 10.