Properties

Label 12-432e6-1.1-c5e6-0-0
Degree $12$
Conductor $6.500\times 10^{15}$
Sign $1$
Analytic cond. $1.10628\times 10^{11}$
Root an. cond. $8.32380$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·5-s + 132·7-s − 315·11-s − 744·13-s − 2.89e3·17-s − 2.26e3·19-s − 3.16e3·23-s + 4.70e3·25-s + 5.14e3·29-s + 8.61e3·31-s + 7.12e3·35-s + 3.99e4·37-s − 5.04e3·41-s + 3.13e4·43-s + 1.29e4·47-s + 7.49e3·49-s + 9.60e4·53-s − 1.70e4·55-s + 6.29e4·59-s − 7.59e4·61-s − 4.01e4·65-s + 3.29e4·67-s − 1.29e5·71-s − 8.46e3·73-s − 4.15e4·77-s − 8.92e4·79-s + 3.26e4·83-s + ⋯
L(s)  = 1  + 0.965·5-s + 1.01·7-s − 0.784·11-s − 1.22·13-s − 2.43·17-s − 1.43·19-s − 1.24·23-s + 1.50·25-s + 1.13·29-s + 1.60·31-s + 0.983·35-s + 4.79·37-s − 0.469·41-s + 2.58·43-s + 0.853·47-s + 0.445·49-s + 4.69·53-s − 0.758·55-s + 2.35·59-s − 2.61·61-s − 1.17·65-s + 0.897·67-s − 3.05·71-s − 0.185·73-s − 0.799·77-s − 1.60·79-s + 0.519·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{18}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{18}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{24} \cdot 3^{18}\)
Sign: $1$
Analytic conductor: \(1.10628\times 10^{11}\)
Root analytic conductor: \(8.32380\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{24} \cdot 3^{18} ,\ ( \ : [5/2]^{6} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.7080688353\)
\(L(\frac12)\) \(\approx\) \(0.7080688353\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 54 T - 1788 T^{2} - 10584 T^{3} + 854952 T^{4} + 487704186 T^{5} - 21775421594 T^{6} + 487704186 p^{5} T^{7} + 854952 p^{10} T^{8} - 10584 p^{15} T^{9} - 1788 p^{20} T^{10} - 54 p^{25} T^{11} + p^{30} T^{12} \)
7 \( 1 - 132 T + 9930 T^{2} - 2383268 T^{3} + 22216338 T^{4} + 1188047664 T^{5} + 4115243377158 T^{6} + 1188047664 p^{5} T^{7} + 22216338 p^{10} T^{8} - 2383268 p^{15} T^{9} + 9930 p^{20} T^{10} - 132 p^{25} T^{11} + p^{30} T^{12} \)
11 \( 1 + 315 T - 222063 T^{2} - 18182214 T^{3} + 32678625651 T^{4} - 477210982239 p T^{5} - 7280422055915978 T^{6} - 477210982239 p^{6} T^{7} + 32678625651 p^{10} T^{8} - 18182214 p^{15} T^{9} - 222063 p^{20} T^{10} + 315 p^{25} T^{11} + p^{30} T^{12} \)
13 \( 1 + 744 T + 110316 T^{2} - 5563444 T^{3} - 92859229188 T^{4} - 67995162383184 T^{5} - 18766393745055906 T^{6} - 67995162383184 p^{5} T^{7} - 92859229188 p^{10} T^{8} - 5563444 p^{15} T^{9} + 110316 p^{20} T^{10} + 744 p^{25} T^{11} + p^{30} T^{12} \)
17 \( ( 1 + 1449 T + 3759531 T^{2} + 3184553142 T^{3} + 3759531 p^{5} T^{4} + 1449 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
19 \( ( 1 + 1131 T + 5928369 T^{2} + 5953391858 T^{3} + 5928369 p^{5} T^{4} + 1131 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
23 \( 1 + 3168 T - 11449086 T^{2} - 14347077444 T^{3} + 192790258568754 T^{4} + 140383346504289372 T^{5} - \)\(11\!\cdots\!18\)\( T^{6} + 140383346504289372 p^{5} T^{7} + 192790258568754 p^{10} T^{8} - 14347077444 p^{15} T^{9} - 11449086 p^{20} T^{10} + 3168 p^{25} T^{11} + p^{30} T^{12} \)
29 \( 1 - 5148 T - 22104564 T^{2} + 185150934252 T^{3} + 244953744801108 T^{4} - 2482021182847364820 T^{5} + \)\(50\!\cdots\!82\)\( T^{6} - 2482021182847364820 p^{5} T^{7} + 244953744801108 p^{10} T^{8} + 185150934252 p^{15} T^{9} - 22104564 p^{20} T^{10} - 5148 p^{25} T^{11} + p^{30} T^{12} \)
31 \( 1 - 8610 T - 10689342 T^{2} + 137042221612 T^{3} + 1032348577619862 T^{4} - 2025683261171583642 T^{5} - \)\(31\!\cdots\!06\)\( T^{6} - 2025683261171583642 p^{5} T^{7} + 1032348577619862 p^{10} T^{8} + 137042221612 p^{15} T^{9} - 10689342 p^{20} T^{10} - 8610 p^{25} T^{11} + p^{30} T^{12} \)
37 \( ( 1 - 19968 T + 327446979 T^{2} - 2957339330768 T^{3} + 327446979 p^{5} T^{4} - 19968 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
41 \( 1 + 5049 T - 49911369 T^{2} + 2355608603160 T^{3} + 1935356544736665 T^{4} - 94902326907305939361 T^{5} + \)\(30\!\cdots\!26\)\( T^{6} - 94902326907305939361 p^{5} T^{7} + 1935356544736665 p^{10} T^{8} + 2355608603160 p^{15} T^{9} - 49911369 p^{20} T^{10} + 5049 p^{25} T^{11} + p^{30} T^{12} \)
43 \( 1 - 31389 T + 371875485 T^{2} - 42403467926 p T^{3} + 12515413892662971 T^{4} - \)\(36\!\cdots\!65\)\( T^{5} + \)\(57\!\cdots\!06\)\( T^{6} - \)\(36\!\cdots\!65\)\( p^{5} T^{7} + 12515413892662971 p^{10} T^{8} - 42403467926 p^{16} T^{9} + 371875485 p^{20} T^{10} - 31389 p^{25} T^{11} + p^{30} T^{12} \)
47 \( 1 - 12924 T - 448629342 T^{2} + 4068633746340 T^{3} + 160129591294416234 T^{4} - \)\(73\!\cdots\!76\)\( T^{5} - \)\(35\!\cdots\!10\)\( T^{6} - \)\(73\!\cdots\!76\)\( p^{5} T^{7} + 160129591294416234 p^{10} T^{8} + 4068633746340 p^{15} T^{9} - 448629342 p^{20} T^{10} - 12924 p^{25} T^{11} + p^{30} T^{12} \)
53 \( ( 1 - 48024 T + 1811738067 T^{2} - 41931353529216 T^{3} + 1811738067 p^{5} T^{4} - 48024 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
59 \( 1 - 62955 T + 1128633393 T^{2} - 9982647295866 T^{3} + 705724247444789571 T^{4} - \)\(15\!\cdots\!79\)\( T^{5} + \)\(56\!\cdots\!06\)\( T^{6} - \)\(15\!\cdots\!79\)\( p^{5} T^{7} + 705724247444789571 p^{10} T^{8} - 9982647295866 p^{15} T^{9} + 1128633393 p^{20} T^{10} - 62955 p^{25} T^{11} + p^{30} T^{12} \)
61 \( 1 + 75966 T + 1651965492 T^{2} + 45532183560440 T^{3} + 3331090328104364760 T^{4} + \)\(76\!\cdots\!06\)\( T^{5} + \)\(63\!\cdots\!14\)\( T^{6} + \)\(76\!\cdots\!06\)\( p^{5} T^{7} + 3331090328104364760 p^{10} T^{8} + 45532183560440 p^{15} T^{9} + 1651965492 p^{20} T^{10} + 75966 p^{25} T^{11} + p^{30} T^{12} \)
67 \( 1 - 32991 T - 1801789179 T^{2} + 76747890991738 T^{3} + 1612255572283172571 T^{4} - \)\(51\!\cdots\!59\)\( T^{5} - \)\(93\!\cdots\!82\)\( T^{6} - \)\(51\!\cdots\!59\)\( p^{5} T^{7} + 1612255572283172571 p^{10} T^{8} + 76747890991738 p^{15} T^{9} - 1801789179 p^{20} T^{10} - 32991 p^{25} T^{11} + p^{30} T^{12} \)
71 \( ( 1 + 64836 T + 5330360517 T^{2} + 233818077065976 T^{3} + 5330360517 p^{5} T^{4} + 64836 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
73 \( ( 1 + 4233 T + 1481704827 T^{2} + 31872982860070 T^{3} + 1481704827 p^{5} T^{4} + 4233 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
79 \( 1 + 89202 T - 946471758 T^{2} - 73104980305676 T^{3} + 13192286849737226406 T^{4} - \)\(18\!\cdots\!50\)\( T^{5} - \)\(72\!\cdots\!62\)\( T^{6} - \)\(18\!\cdots\!50\)\( p^{5} T^{7} + 13192286849737226406 p^{10} T^{8} - 73104980305676 p^{15} T^{9} - 946471758 p^{20} T^{10} + 89202 p^{25} T^{11} + p^{30} T^{12} \)
83 \( 1 - 32634 T - 7761884658 T^{2} + 19287559006164 T^{3} + 38129210867128845714 T^{4} + \)\(40\!\cdots\!90\)\( T^{5} - \)\(17\!\cdots\!58\)\( T^{6} + \)\(40\!\cdots\!90\)\( p^{5} T^{7} + 38129210867128845714 p^{10} T^{8} + 19287559006164 p^{15} T^{9} - 7761884658 p^{20} T^{10} - 32634 p^{25} T^{11} + p^{30} T^{12} \)
89 \( ( 1 + 33066 T + 16131261399 T^{2} + 360180435327660 T^{3} + 16131261399 p^{5} T^{4} + 33066 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
97 \( 1 - 46245 T - 17067186177 T^{2} + 116084978368376 T^{3} + \)\(18\!\cdots\!05\)\( T^{4} + \)\(22\!\cdots\!89\)\( T^{5} - \)\(18\!\cdots\!78\)\( T^{6} + \)\(22\!\cdots\!89\)\( p^{5} T^{7} + \)\(18\!\cdots\!05\)\( p^{10} T^{8} + 116084978368376 p^{15} T^{9} - 17067186177 p^{20} T^{10} - 46245 p^{25} T^{11} + p^{30} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.94380818217684192319474319925, −4.81020479758843359276122605921, −4.72507438870421166561144032576, −4.65250037708897745202128830289, −4.54223309721499718662224313658, −4.26795831277447493427659176952, −4.14533567142126161209665845783, −4.06739176506705177437443430399, −3.82615732640285928815240145330, −3.57768335753677543583466105826, −3.04278717962441169952691306322, −2.77619950384084585590654925099, −2.70611758592658411058592287441, −2.56208549149007301377412313268, −2.42736747354408584243923560268, −2.36487502427848206386709121250, −2.19389548430297005113077299167, −1.83173223063805881320396583616, −1.75646416191428584492567597251, −1.12740245461596870478985412935, −1.00808775377977555384626012042, −0.930786149268317625249634598731, −0.799715271963220810157954565059, −0.35016754861972618053073765999, −0.06299316940170122638926302094, 0.06299316940170122638926302094, 0.35016754861972618053073765999, 0.799715271963220810157954565059, 0.930786149268317625249634598731, 1.00808775377977555384626012042, 1.12740245461596870478985412935, 1.75646416191428584492567597251, 1.83173223063805881320396583616, 2.19389548430297005113077299167, 2.36487502427848206386709121250, 2.42736747354408584243923560268, 2.56208549149007301377412313268, 2.70611758592658411058592287441, 2.77619950384084585590654925099, 3.04278717962441169952691306322, 3.57768335753677543583466105826, 3.82615732640285928815240145330, 4.06739176506705177437443430399, 4.14533567142126161209665845783, 4.26795831277447493427659176952, 4.54223309721499718662224313658, 4.65250037708897745202128830289, 4.72507438870421166561144032576, 4.81020479758843359276122605921, 4.94380818217684192319474319925

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.