L(s) = 1 | − 2·3-s − 2·7-s − 2·9-s + 3·11-s + 3·13-s + 2·17-s + 6·19-s + 4·21-s − 4·23-s + 2·27-s + 7·29-s + 5·31-s − 6·33-s − 6·39-s + 11·41-s + 7·43-s − 20·47-s − 20·49-s − 4·51-s + 7·53-s − 12·57-s − 4·59-s + 13·61-s + 4·63-s − 25·67-s + 8·69-s + 29·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.755·7-s − 2/3·9-s + 0.904·11-s + 0.832·13-s + 0.485·17-s + 1.37·19-s + 0.872·21-s − 0.834·23-s + 0.384·27-s + 1.29·29-s + 0.898·31-s − 1.04·33-s − 0.960·39-s + 1.71·41-s + 1.06·43-s − 2.91·47-s − 2.85·49-s − 0.560·51-s + 0.961·53-s − 1.58·57-s − 0.520·59-s + 1.66·61-s + 0.503·63-s − 3.05·67-s + 0.963·69-s + 3.44·71-s + ⋯ |
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.640322600 |
L(21) |
≈ |
6.640322600 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | (1−T)6 |
good | 3 | 1+2T+2pT2+14T3+8pT4+40T5+83T6+40pT7+8p3T8+14p3T9+2p5T10+2p5T11+p6T12 |
| 7 | 1+2T+24T2+54T3+318T4+594T5+2791T6+594pT7+318p2T8+54p3T9+24p4T10+2p5T11+p6T12 |
| 11 | 1−3T+14T2−50T3+433T4−915T5+3400T6−915pT7+433p2T8−50p3T9+14p4T10−3p5T11+p6T12 |
| 13 | 1−3T+35T2−134T3+790T4−2388T5+13141T6−2388pT7+790p2T8−134p3T9+35p4T10−3p5T11+p6T12 |
| 17 | 1−2T+40T2+12T3+422T4+2878T5+309T6+2878pT7+422p2T8+12p3T9+40p4T10−2p5T11+p6T12 |
| 23 | 1+4T+96T2+346T3+4540T4+14008T5+131019T6+14008pT7+4540p2T8+346p3T9+96p4T10+4p5T11+p6T12 |
| 29 | 1−7T+101T2−680T3+6104T4−32894T5+218211T6−32894pT7+6104p2T8−680p3T9+101p4T10−7p5T11+p6T12 |
| 31 | 1−5T+116T2−166T3+4207T4+9815T5+97168T6+9815pT7+4207p2T8−166p3T9+116p4T10−5p5T11+p6T12 |
| 37 | 1+14T2−189T3+1675T4−1758T5+75767T6−1758pT7+1675p2T8−189p3T9+14p4T10+p6T12 |
| 41 | 1−11T+162T2−1616T3+14575T4−107273T5+784764T6−107273pT7+14575p2T8−1616p3T9+162p4T10−11p5T11+p6T12 |
| 43 | 1−7T+pT2−530T3+3441T4−21767T5+216350T6−21767pT7+3441p2T8−530p3T9+p5T10−7p5T11+p6T12 |
| 47 | 1+20T+294T2+2363T3+14371T4+39728T5+169611T6+39728pT7+14371p2T8+2363p3T9+294p4T10+20p5T11+p6T12 |
| 53 | 1−7T+286T2−1674T3+35709T4−168565T5+2474973T6−168565pT7+35709p2T8−1674p3T9+286p4T10−7p5T11+p6T12 |
| 59 | 1+4T+261T2+825T3+32193T4+80901T5+2380506T6+80901pT7+32193p2T8+825p3T9+261p4T10+4p5T11+p6T12 |
| 61 | 1−13T+246T2−2418T3+29973T4−235869T5+2276056T6−235869pT7+29973p2T8−2418p3T9+246p4T10−13p5T11+p6T12 |
| 67 | 1+25T+505T2+6772T3+80896T4+773578T5+6921907T6+773578pT7+80896p2T8+6772p3T9+505p4T10+25p5T11+p6T12 |
| 71 | 1−29T+603T2−8526T3+102909T4−1014029T5+9209494T6−1014029pT7+102909p2T8−8526p3T9+603p4T10−29p5T11+p6T12 |
| 73 | 1−19T+505T2−6558T3+98292T4−932744T5+9748099T6−932744pT7+98292p2T8−6558p3T9+505p4T10−19p5T11+p6T12 |
| 79 | 1−28T+659T2−10371T3+145815T4−1597403T5+15814250T6−1597403pT7+145815p2T8−10371p3T9+659p4T10−28p5T11+p6T12 |
| 83 | 1−15T+496T2−5598T3+100571T4−875935T5+11004272T6−875935pT7+100571p2T8−5598p3T9+496p4T10−15p5T11+p6T12 |
| 89 | 1+12T+317T2+3161T3+56077T4+457091T5+6094922T6+457091pT7+56077p2T8+3161p3T9+317p4T10+12p5T11+p6T12 |
| 97 | 1−13T+448T2−3788T3+80619T4−494279T5+9036752T6−494279pT7+80619p2T8−3788p3T9+448p4T10−13p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.46648786347518582615362076038, −4.24279194898142944047893608085, −3.93283401751500165448886812878, −3.85816143555688724288215696468, −3.80934785976132510067552783818, −3.69035037313820857998537092097, −3.62594136921848654234886457068, −3.34852421856841495755656570253, −3.07814905223241342159665174421, −3.00755292430544107951787788499, −2.98611152398659657223707538927, −2.89417324206712532907744656805, −2.86946963991985976446731019380, −2.20796277163223607968511295493, −2.11319549206465084375759513915, −2.09090628458287860144196322609, −2.01941328226326698882869417820, −1.74476405464845389362770201299, −1.58114325876011649506517240097, −1.19296284502594746923767920620, −1.01419590745058069875263520790, −0.818379065893886754149673685414, −0.63634959477184138414104289188, −0.47486822745821865085859932953, −0.39984940269767498431159631899,
0.39984940269767498431159631899, 0.47486822745821865085859932953, 0.63634959477184138414104289188, 0.818379065893886754149673685414, 1.01419590745058069875263520790, 1.19296284502594746923767920620, 1.58114325876011649506517240097, 1.74476405464845389362770201299, 2.01941328226326698882869417820, 2.09090628458287860144196322609, 2.11319549206465084375759513915, 2.20796277163223607968511295493, 2.86946963991985976446731019380, 2.89417324206712532907744656805, 2.98611152398659657223707538927, 3.00755292430544107951787788499, 3.07814905223241342159665174421, 3.34852421856841495755656570253, 3.62594136921848654234886457068, 3.69035037313820857998537092097, 3.80934785976132510067552783818, 3.85816143555688724288215696468, 3.93283401751500165448886812878, 4.24279194898142944047893608085, 4.46648786347518582615362076038
Plot not available for L-functions of degree greater than 10.