L(s) = 1 | − 2·3-s − 2·7-s − 4·9-s + 3·11-s + 13-s + 14·17-s − 6·19-s + 4·21-s − 12·23-s + 10·27-s + 9·29-s + 5·31-s − 6·33-s + 8·37-s − 2·39-s + 3·41-s − 15·43-s − 4·47-s − 8·49-s − 28·51-s − 13·53-s + 12·57-s + 9·61-s + 8·63-s + 3·67-s + 24·69-s + 19·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.755·7-s − 4/3·9-s + 0.904·11-s + 0.277·13-s + 3.39·17-s − 1.37·19-s + 0.872·21-s − 2.50·23-s + 1.92·27-s + 1.67·29-s + 0.898·31-s − 1.04·33-s + 1.31·37-s − 0.320·39-s + 0.468·41-s − 2.28·43-s − 0.583·47-s − 8/7·49-s − 3.92·51-s − 1.78·53-s + 1.58·57-s + 1.15·61-s + 1.00·63-s + 0.366·67-s + 2.88·69-s + 2.25·71-s + ⋯ |
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.712941636 |
L(21) |
≈ |
4.712941636 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | (1+T)6 |
good | 3 | 1+2T+8T2+14T3+10pT4+50T5+29pT6+50pT7+10p3T8+14p3T9+8p4T10+2p5T11+p6T12 |
| 7 | 1+2T+12T2+22T3+118T4+18pT5+779T6+18p2T7+118p2T8+22p3T9+12p4T10+2p5T11+p6T12 |
| 11 | 1−3T+26T2−26T3+65T4+749T5−208pT6+749pT7+65p2T8−26p3T9+26p4T10−3p5T11+p6T12 |
| 13 | 1−T+pT2−50T3+38T4+516T5+1813T6+516pT7+38p2T8−50p3T9+p5T10−p5T11+p6T12 |
| 17 | 1−14T+124T2−848T3+4842T4−24018T5+105929T6−24018pT7+4842p2T8−848p3T9+124p4T10−14p5T11+p6T12 |
| 23 | 1+12T+112T2+778T3+4884T4+25856T5+128015T6+25856pT7+4884p2T8+778p3T9+112p4T10+12p5T11+p6T12 |
| 29 | 1−9T+107T2−600T3+5158T4−26640T5+189919T6−26640pT7+5158p2T8−600p3T9+107p4T10−9p5T11+p6T12 |
| 31 | 1−5T+50T2−176T3+771T4−5843T5+22284T6−5843pT7+771p2T8−176p3T9+50p4T10−5p5T11+p6T12 |
| 37 | 1−8T+132T2−743T3+7797T4−33802T5+309503T6−33802pT7+7797p2T8−743p3T9+132p4T10−8p5T11+p6T12 |
| 41 | 1−3T+66T2−146T3+4087T4−5943T5+137612T6−5943pT7+4087p2T8−146p3T9+66p4T10−3p5T11+p6T12 |
| 43 | 1+15T+271T2+2530T3+26829T4+185919T5+1470270T6+185919pT7+26829p2T8+2530p3T9+271p4T10+15p5T11+p6T12 |
| 47 | 1+4T+230T2+749T3+23811T4+1352pT5+1431531T6+1352p2T7+23811p2T8+749p3T9+230p4T10+4p5T11+p6T12 |
| 53 | 1+13T+126T2+1554T3+12921T4+108347T5+968797T6+108347pT7+12921p2T8+1554p3T9+126p4T10+13p5T11+p6T12 |
| 59 | 1+161T2+255T3+12605T4+44407T5+744938T6+44407pT7+12605p2T8+255p3T9+161p4T10+p6T12 |
| 61 | 1−9T+234T2−2302T3+30205T4−3881pT5+2409968T6−3881p2T7+30205p2T8−2302p3T9+234p4T10−9p5T11+p6T12 |
| 67 | 1−3T+203T2−820T3+23862T4−100928T5+1840467T6−100928pT7+23862p2T8−820p3T9+203p4T10−3p5T11+p6T12 |
| 71 | 1−19T+351T2−3254T3+31709T4−169223T5+1652142T6−169223pT7+31709p2T8−3254p3T9+351p4T10−19p5T11+p6T12 |
| 73 | 1+3T+133T2+274T3+18744T4+31092T5+1356111T6+31092pT7+18744p2T8+274p3T9+133p4T10+3p5T11+p6T12 |
| 79 | 1+16T+189T2+1815T3+19499T4+139691T5+1154286T6+139691pT7+19499p2T8+1815p3T9+189p4T10+16p5T11+p6T12 |
| 83 | 1+31T+824T2+13802T3+205891T4+2327315T5+23897248T6+2327315pT7+205891p2T8+13802p3T9+824p4T10+31p5T11+p6T12 |
| 89 | 1−14T+467T2−5503T3+93933T4−916667T5+10735038T6−916667pT7+93933p2T8−5503p3T9+467p4T10−14p5T11+p6T12 |
| 97 | 1−11T+374T2−3862T3+74175T4−650639T5+8888572T6−650639pT7+74175p2T8−3862p3T9+374p4T10−11p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.34622309274093397128652057411, −4.15706055029957661762160157046, −4.02797270679690645626290552090, −3.98407109844095702376812415286, −3.88847013151906623993700021614, −3.71298704342400990336202592685, −3.49013750588492898404309316889, −3.16105278521843829131378944880, −3.15702560461685351166608566606, −2.98833209566256860990705508822, −2.94307679812171951738207131986, −2.92181657668714199430125623287, −2.91657404336742598428573155388, −2.47561651512472468204297282998, −2.05859302237289275087996841947, −1.92945799514007907577466530205, −1.86132197103629459089971158830, −1.77939889325735359663450105121, −1.68321993376562308574504357026, −1.36995978014762498193570884767, −0.965009873455249558456152894215, −0.68198939034702020857083765837, −0.58249917694669068976413874887, −0.55777705409897091411123674292, −0.34772825004131021745878878768,
0.34772825004131021745878878768, 0.55777705409897091411123674292, 0.58249917694669068976413874887, 0.68198939034702020857083765837, 0.965009873455249558456152894215, 1.36995978014762498193570884767, 1.68321993376562308574504357026, 1.77939889325735359663450105121, 1.86132197103629459089971158830, 1.92945799514007907577466530205, 2.05859302237289275087996841947, 2.47561651512472468204297282998, 2.91657404336742598428573155388, 2.92181657668714199430125623287, 2.94307679812171951738207131986, 2.98833209566256860990705508822, 3.15702560461685351166608566606, 3.16105278521843829131378944880, 3.49013750588492898404309316889, 3.71298704342400990336202592685, 3.88847013151906623993700021614, 3.98407109844095702376812415286, 4.02797270679690645626290552090, 4.15706055029957661762160157046, 4.34622309274093397128652057411
Plot not available for L-functions of degree greater than 10.