Properties

Label 12-3800e6-1.1-c1e6-0-5
Degree $12$
Conductor $3.011\times 10^{21}$
Sign $1$
Analytic cond. $7.80484\times 10^{8}$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·9-s − 6·19-s + 14·29-s + 12·31-s − 44·41-s + 9·49-s − 22·59-s − 32·61-s − 52·79-s + 34·81-s + 12·89-s − 8·101-s − 6·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 11·169-s − 54·171-s + 173-s + 179-s + ⋯
L(s)  = 1  + 3·9-s − 1.37·19-s + 2.59·29-s + 2.15·31-s − 6.87·41-s + 9/7·49-s − 2.86·59-s − 4.09·61-s − 5.85·79-s + 34/9·81-s + 1.27·89-s − 0.796·101-s − 0.574·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.846·169-s − 4.12·171-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{18} \cdot 5^{12} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(7.80484\times 10^{8}\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{18} \cdot 5^{12} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.847515695\)
\(L(\frac12)\) \(\approx\) \(2.847515695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( ( 1 + T )^{6} \)
good3 \( 1 - p^{2} T^{2} + 47 T^{4} - 170 T^{6} + 47 p^{2} T^{8} - p^{6} T^{10} + p^{6} T^{12} \)
7 \( 1 - 9 T^{2} + 5 p T^{4} - 38 T^{6} + 5 p^{3} T^{8} - 9 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + 5 T^{2} + 16 T^{3} + 5 p T^{4} + p^{3} T^{6} )^{2} \)
13 \( 1 + 11 T^{2} + 55 T^{4} - 2146 T^{6} + 55 p^{2} T^{8} + 11 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 - 5 p T^{2} + 3219 T^{4} - 70126 T^{6} + 3219 p^{2} T^{8} - 5 p^{5} T^{10} + p^{6} T^{12} \)
23 \( 1 - 97 T^{2} + 4419 T^{4} - 124918 T^{6} + 4419 p^{2} T^{8} - 97 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 7 T + 43 T^{2} - 114 T^{3} + 43 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( ( 1 - 6 T + 77 T^{2} - 340 T^{3} + 77 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 2 p T^{2} + 4747 T^{4} - 190436 T^{6} + 4747 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
41 \( ( 1 + 22 T + 223 T^{2} + 1572 T^{3} + 223 p T^{4} + 22 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 94 T^{2} + 7591 T^{4} - 340324 T^{6} + 7591 p^{2} T^{8} - 94 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 58 T^{2} + 3567 T^{4} - 270316 T^{6} + 3567 p^{2} T^{8} - 58 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 + 67 T^{2} + 7527 T^{4} + 328942 T^{6} + 7527 p^{2} T^{8} + 67 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 11 T + 37 T^{2} - 246 T^{3} + 37 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 + 16 T + 207 T^{2} + 1600 T^{3} + 207 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 3 p T^{2} + 22943 T^{4} - 1802666 T^{6} + 22943 p^{2} T^{8} - 3 p^{5} T^{10} + p^{6} T^{12} \)
71 \( ( 1 + p T^{2} )^{6} \)
73 \( 1 - 69 T^{2} + 14051 T^{4} - 586094 T^{6} + 14051 p^{2} T^{8} - 69 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 26 T + 445 T^{2} + 4604 T^{3} + 445 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 398 T^{2} + 71991 T^{4} - 7610180 T^{6} + 71991 p^{2} T^{8} - 398 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 - 6 T + 15 T^{2} + 188 T^{3} + 15 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 402 T^{2} + 79331 T^{4} - 9565460 T^{6} + 79331 p^{2} T^{8} - 402 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.49502115445240503263295553096, −4.30813300771414593835423957170, −4.09251266842098676810205321403, −4.05963809433703045354104343816, −3.84189747281471888938144246313, −3.59863614099654085249728311458, −3.55674168602339080079632327461, −3.35688173548907410371942501612, −3.28791847174755175056626734007, −3.04870458607400675070429381942, −2.89248786738415900704407369059, −2.69703934389160025444259154045, −2.50850159937470630845207701855, −2.47954697627113768009821596601, −2.46380480121972654620512450713, −1.99254294041878720120639405390, −1.64797676790851794209185882959, −1.51051979957863450251381268019, −1.46254025385839610955371610446, −1.42479544875468443842243438656, −1.38505100929604384259484377236, −1.28158527650333582157824441116, −0.67022896519519713265701968297, −0.26018709799994795815547576798, −0.25823291424071232560391514923, 0.25823291424071232560391514923, 0.26018709799994795815547576798, 0.67022896519519713265701968297, 1.28158527650333582157824441116, 1.38505100929604384259484377236, 1.42479544875468443842243438656, 1.46254025385839610955371610446, 1.51051979957863450251381268019, 1.64797676790851794209185882959, 1.99254294041878720120639405390, 2.46380480121972654620512450713, 2.47954697627113768009821596601, 2.50850159937470630845207701855, 2.69703934389160025444259154045, 2.89248786738415900704407369059, 3.04870458607400675070429381942, 3.28791847174755175056626734007, 3.35688173548907410371942501612, 3.55674168602339080079632327461, 3.59863614099654085249728311458, 3.84189747281471888938144246313, 4.05963809433703045354104343816, 4.09251266842098676810205321403, 4.30813300771414593835423957170, 4.49502115445240503263295553096

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.