L(s) = 1 | + 8·9-s − 6·11-s + 6·19-s + 2·29-s − 6·31-s − 18·41-s + 32·49-s + 20·59-s − 42·61-s + 2·71-s + 40·79-s + 24·81-s − 8·89-s − 48·99-s − 32·101-s − 14·109-s − 35·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 69·169-s + ⋯ |
L(s) = 1 | + 8/3·9-s − 1.80·11-s + 1.37·19-s + 0.371·29-s − 1.07·31-s − 2.81·41-s + 32/7·49-s + 2.60·59-s − 5.37·61-s + 0.237·71-s + 4.50·79-s + 8/3·81-s − 0.847·89-s − 4.82·99-s − 3.18·101-s − 1.34·109-s − 3.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 5.30·169-s + ⋯ |
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅512⋅196)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.280111552 |
L(21) |
≈ |
5.280111552 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | (1−T)6 |
good | 3 | 1−8T2+40T4−47pT6+40p2T8−8p4T10+p6T12 |
| 7 | 1−32T2+480T4−4261T6+480p2T8−32p4T10+p6T12 |
| 11 | (1+3T+31T2+65T3+31pT4+3p2T5+p3T6)2 |
| 13 | 1−69T2+2089T4−35377T6+2089p2T8−69p4T10+p6T12 |
| 17 | 1−60T2+2020T4−41801T6+2020p2T8−60p4T10+p6T12 |
| 23 | 1−120T2+12p2T4−189357T6+12p4T8−120p4T10+p6T12 |
| 29 | (1−T+9T2−107T3+9pT4−p2T5+p3T6)2 |
| 31 | (1+3T+57T2+105T3+57pT4+3p2T5+p3T6)2 |
| 37 | 1−173T2+377pT4−657833T6+377p3T8−173p4T10+p6T12 |
| 41 | (1+9T+103T2+563T3+103pT4+9p2T5+p3T6)2 |
| 43 | 1−175T2+15366T4−820571T6+15366p2T8−175p4T10+p6T12 |
| 47 | 1−173T2+13777T4−738289T6+13777p2T8−173p4T10+p6T12 |
| 53 | 1−251T2+28142T4−1870607T6+28142p2T8−251p4T10+p6T12 |
| 59 | (1−10T+193T2−1172T3+193pT4−10p2T5+p3T6)2 |
| 61 | (1+21T+265T2+37pT3+265pT4+21p2T5+p3T6)2 |
| 67 | 1−305T2+41985T4−3488601T6+41985p2T8−305p4T10+p6T12 |
| 71 | (1−T+132T2+139T3+132pT4−p2T5+p3T6)2 |
| 73 | 1−65T2+9333T4−292257T6+9333p2T8−65p4T10+p6T12 |
| 79 | (1−20T+292T2−2859T3+292pT4−20p2T5+p3T6)2 |
| 83 | 1−261T2+38793T4−3975273T6+38793p2T8−261p4T10+p6T12 |
| 89 | (1+4T+148T2+1067T3+148pT4+4p2T5+p3T6)2 |
| 97 | 1−429T2+86457T4−10512313T6+86457p2T8−429p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.30421526036297072065023350168, −4.25921993980672892949589834630, −4.14169948379037910479312859877, −4.05181969328075046486303025632, −3.69211282472426697328912494887, −3.60662581388110246341105251411, −3.55297171408828834017597842906, −3.52026849561204917171305787522, −3.27285231820678467931274711395, −3.00900683175834972874577745819, −2.90061353124348997683568267497, −2.63909753318428756730844710575, −2.60205291545495832822974439348, −2.40862489649484407571771670361, −2.25296497467054431748179219903, −2.21941951284794359741144319074, −1.83616106002060038410262931476, −1.58310955005510152360629385083, −1.57440518974004092979092703762, −1.34930806915059113116715711415, −1.16512632568380846914502097557, −1.14088560416699761886137482040, −0.61399921636274559247474804549, −0.47451669956612729669134553388, −0.23519039623746656479886125353,
0.23519039623746656479886125353, 0.47451669956612729669134553388, 0.61399921636274559247474804549, 1.14088560416699761886137482040, 1.16512632568380846914502097557, 1.34930806915059113116715711415, 1.57440518974004092979092703762, 1.58310955005510152360629385083, 1.83616106002060038410262931476, 2.21941951284794359741144319074, 2.25296497467054431748179219903, 2.40862489649484407571771670361, 2.60205291545495832822974439348, 2.63909753318428756730844710575, 2.90061353124348997683568267497, 3.00900683175834972874577745819, 3.27285231820678467931274711395, 3.52026849561204917171305787522, 3.55297171408828834017597842906, 3.60662581388110246341105251411, 3.69211282472426697328912494887, 4.05181969328075046486303025632, 4.14169948379037910479312859877, 4.25921993980672892949589834630, 4.30421526036297072065023350168
Plot not available for L-functions of degree greater than 10.