Properties

Label 12-3800e6-1.1-c1e6-0-11
Degree 1212
Conductor 3.011×10213.011\times 10^{21}
Sign 11
Analytic cond. 7.80484×1087.80484\times 10^{8}
Root an. cond. 5.508465.50846
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 66

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 6·7-s − 3·9-s − 2·11-s − 14·13-s − 10·17-s + 6·19-s + 12·21-s − 2·23-s + 10·27-s − 2·29-s + 8·31-s + 4·33-s − 4·37-s + 28·39-s + 4·41-s − 4·43-s − 4·47-s − 2·49-s + 20·51-s + 14·53-s − 12·57-s − 2·59-s + 10·61-s + 18·63-s − 42·67-s + 4·69-s + ⋯
L(s)  = 1  − 1.15·3-s − 2.26·7-s − 9-s − 0.603·11-s − 3.88·13-s − 2.42·17-s + 1.37·19-s + 2.61·21-s − 0.417·23-s + 1.92·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s − 0.657·37-s + 4.48·39-s + 0.624·41-s − 0.609·43-s − 0.583·47-s − 2/7·49-s + 2.80·51-s + 1.92·53-s − 1.58·57-s − 0.260·59-s + 1.28·61-s + 2.26·63-s − 5.13·67-s + 0.481·69-s + ⋯

Functional equation

Λ(s)=((218512196)s/2ΓC(s)6L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((218512196)s/2ΓC(s+1/2)6L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1212
Conductor: 2185121962^{18} \cdot 5^{12} \cdot 19^{6}
Sign: 11
Analytic conductor: 7.80484×1087.80484\times 10^{8}
Root analytic conductor: 5.508465.50846
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 66
Selberg data: (12, 218512196, ( :[1/2]6), 1)(12,\ 2^{18} \cdot 5^{12} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 (1T)6 ( 1 - T )^{6}
good3 1+2T+7T2+10T3+25T4+32T5+86T6+32pT7+25p2T8+10p3T9+7p4T10+2p5T11+p6T12 1 + 2 T + 7 T^{2} + 10 T^{3} + 25 T^{4} + 32 T^{5} + 86 T^{6} + 32 p T^{7} + 25 p^{2} T^{8} + 10 p^{3} T^{9} + 7 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12}
7 1+6T+38T2+148T3+82pT4+1674T5+4994T6+1674pT7+82p3T8+148p3T9+38p4T10+6p5T11+p6T12 1 + 6 T + 38 T^{2} + 148 T^{3} + 82 p T^{4} + 1674 T^{5} + 4994 T^{6} + 1674 p T^{7} + 82 p^{3} T^{8} + 148 p^{3} T^{9} + 38 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12}
11 1+2T+13T2+34T3+245T4+368T5+2322T6+368pT7+245p2T8+34p3T9+13p4T10+2p5T11+p6T12 1 + 2 T + 13 T^{2} + 34 T^{3} + 245 T^{4} + 368 T^{5} + 2322 T^{6} + 368 p T^{7} + 245 p^{2} T^{8} + 34 p^{3} T^{9} + 13 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12}
13 1+14T+105T2+558T3+2669T4+924pT5+47674T6+924p2T7+2669p2T8+558p3T9+105p4T10+14p5T11+p6T12 1 + 14 T + 105 T^{2} + 558 T^{3} + 2669 T^{4} + 924 p T^{5} + 47674 T^{6} + 924 p^{2} T^{7} + 2669 p^{2} T^{8} + 558 p^{3} T^{9} + 105 p^{4} T^{10} + 14 p^{5} T^{11} + p^{6} T^{12}
17 1+10T+4pT2+276T3+1308T4+6202T5+30858T6+6202pT7+1308p2T8+276p3T9+4p5T10+10p5T11+p6T12 1 + 10 T + 4 p T^{2} + 276 T^{3} + 1308 T^{4} + 6202 T^{5} + 30858 T^{6} + 6202 p T^{7} + 1308 p^{2} T^{8} + 276 p^{3} T^{9} + 4 p^{5} T^{10} + 10 p^{5} T^{11} + p^{6} T^{12}
23 1+2T+77T2+186T3+2931T4+6760T5+77966T6+6760pT7+2931p2T8+186p3T9+77p4T10+2p5T11+p6T12 1 + 2 T + 77 T^{2} + 186 T^{3} + 2931 T^{4} + 6760 T^{5} + 77966 T^{6} + 6760 p T^{7} + 2931 p^{2} T^{8} + 186 p^{3} T^{9} + 77 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12}
29 1+2T+79T2102T3+3027T48324T5+101530T68324pT7+3027p2T8102p3T9+79p4T10+2p5T11+p6T12 1 + 2 T + 79 T^{2} - 102 T^{3} + 3027 T^{4} - 8324 T^{5} + 101530 T^{6} - 8324 p T^{7} + 3027 p^{2} T^{8} - 102 p^{3} T^{9} + 79 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12}
31 18T+148T2920T3+10167T450192T5+403176T650192pT7+10167p2T8920p3T9+148p4T108p5T11+p6T12 1 - 8 T + 148 T^{2} - 920 T^{3} + 10167 T^{4} - 50192 T^{5} + 403176 T^{6} - 50192 p T^{7} + 10167 p^{2} T^{8} - 920 p^{3} T^{9} + 148 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12}
37 1+4T+100T2+436T3+6119T4+22616T5+267960T6+22616pT7+6119p2T8+436p3T9+100p4T10+4p5T11+p6T12 1 + 4 T + 100 T^{2} + 436 T^{3} + 6119 T^{4} + 22616 T^{5} + 267960 T^{6} + 22616 p T^{7} + 6119 p^{2} T^{8} + 436 p^{3} T^{9} + 100 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12}
41 14T+188T2676T3+16775T450488T5+876504T650488pT7+16775p2T8676p3T9+188p4T104p5T11+p6T12 1 - 4 T + 188 T^{2} - 676 T^{3} + 16775 T^{4} - 50488 T^{5} + 876504 T^{6} - 50488 p T^{7} + 16775 p^{2} T^{8} - 676 p^{3} T^{9} + 188 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12}
43 1+4T+141T2+712T3+11185T4+49420T5+594874T6+49420pT7+11185p2T8+712p3T9+141p4T10+4p5T11+p6T12 1 + 4 T + 141 T^{2} + 712 T^{3} + 11185 T^{4} + 49420 T^{5} + 594874 T^{6} + 49420 p T^{7} + 11185 p^{2} T^{8} + 712 p^{3} T^{9} + 141 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12}
47 1+4T+243T2+816T3+26239T4+71836T5+1599386T6+71836pT7+26239p2T8+816p3T9+243p4T10+4p5T11+p6T12 1 + 4 T + 243 T^{2} + 816 T^{3} + 26239 T^{4} + 71836 T^{5} + 1599386 T^{6} + 71836 p T^{7} + 26239 p^{2} T^{8} + 816 p^{3} T^{9} + 243 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12}
53 114T+249T22462T3+28173T4220540T5+1887962T6220540pT7+28173p2T82462p3T9+249p4T1014p5T11+p6T12 1 - 14 T + 249 T^{2} - 2462 T^{3} + 28173 T^{4} - 220540 T^{5} + 1887962 T^{6} - 220540 p T^{7} + 28173 p^{2} T^{8} - 2462 p^{3} T^{9} + 249 p^{4} T^{10} - 14 p^{5} T^{11} + p^{6} T^{12}
59 1+2T+89T2+114T3+9599T4+8120T5+549326T6+8120pT7+9599p2T8+114p3T9+89p4T10+2p5T11+p6T12 1 + 2 T + 89 T^{2} + 114 T^{3} + 9599 T^{4} + 8120 T^{5} + 549326 T^{6} + 8120 p T^{7} + 9599 p^{2} T^{8} + 114 p^{3} T^{9} + 89 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12}
61 110T+233T21710T3+27173T4171840T5+2075338T6171840pT7+27173p2T81710p3T9+233p4T1010p5T11+p6T12 1 - 10 T + 233 T^{2} - 1710 T^{3} + 27173 T^{4} - 171840 T^{5} + 2075338 T^{6} - 171840 p T^{7} + 27173 p^{2} T^{8} - 1710 p^{3} T^{9} + 233 p^{4} T^{10} - 10 p^{5} T^{11} + p^{6} T^{12}
67 1+42T+1067T2+18970T3+262101T4+2890456T5+26146286T6+2890456pT7+262101p2T8+18970p3T9+1067p4T10+42p5T11+p6T12 1 + 42 T + 1067 T^{2} + 18970 T^{3} + 262101 T^{4} + 2890456 T^{5} + 26146286 T^{6} + 2890456 p T^{7} + 262101 p^{2} T^{8} + 18970 p^{3} T^{9} + 1067 p^{4} T^{10} + 42 p^{5} T^{11} + p^{6} T^{12}
71 1+8T+364T2+2736T3+58431T4+381256T5+5343112T6+381256pT7+58431p2T8+2736p3T9+364p4T10+8p5T11+p6T12 1 + 8 T + 364 T^{2} + 2736 T^{3} + 58431 T^{4} + 381256 T^{5} + 5343112 T^{6} + 381256 p T^{7} + 58431 p^{2} T^{8} + 2736 p^{3} T^{9} + 364 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12}
73 12T+276T21356T3+33692T4238482T5+2758666T6238482pT7+33692p2T81356p3T9+276p4T102p5T11+p6T12 1 - 2 T + 276 T^{2} - 1356 T^{3} + 33692 T^{4} - 238482 T^{5} + 2758666 T^{6} - 238482 p T^{7} + 33692 p^{2} T^{8} - 1356 p^{3} T^{9} + 276 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12}
79 1+20T+590T2+7996T3+129599T4+1270184T5+14099364T6+1270184pT7+129599p2T8+7996p3T9+590p4T10+20p5T11+p6T12 1 + 20 T + 590 T^{2} + 7996 T^{3} + 129599 T^{4} + 1270184 T^{5} + 14099364 T^{6} + 1270184 p T^{7} + 129599 p^{2} T^{8} + 7996 p^{3} T^{9} + 590 p^{4} T^{10} + 20 p^{5} T^{11} + p^{6} T^{12}
83 1+16T+510T2+6064T3+105831T4+961376T5+11690948T6+961376pT7+105831p2T8+6064p3T9+510p4T10+16p5T11+p6T12 1 + 16 T + 510 T^{2} + 6064 T^{3} + 105831 T^{4} + 961376 T^{5} + 11690948 T^{6} + 961376 p T^{7} + 105831 p^{2} T^{8} + 6064 p^{3} T^{9} + 510 p^{4} T^{10} + 16 p^{5} T^{11} + p^{6} T^{12}
89 132T+656T29816T3+119487T41272488T5+12355776T61272488pT7+119487p2T89816p3T9+656p4T1032p5T11+p6T12 1 - 32 T + 656 T^{2} - 9816 T^{3} + 119487 T^{4} - 1272488 T^{5} + 12355776 T^{6} - 1272488 p T^{7} + 119487 p^{2} T^{8} - 9816 p^{3} T^{9} + 656 p^{4} T^{10} - 32 p^{5} T^{11} + p^{6} T^{12}
97 1+40T+1060T2+20000T3+303631T4+3806872T5+40585688T6+3806872pT7+303631p2T8+20000p3T9+1060p4T10+40p5T11+p6T12 1 + 40 T + 1060 T^{2} + 20000 T^{3} + 303631 T^{4} + 3806872 T^{5} + 40585688 T^{6} + 3806872 p T^{7} + 303631 p^{2} T^{8} + 20000 p^{3} T^{9} + 1060 p^{4} T^{10} + 40 p^{5} T^{11} + p^{6} T^{12}
show more
show less
   L(s)=p j=112(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.86137399173361902895522723888, −4.70946292907760828137527104972, −4.48776180496958968650406602687, −4.38815158110018228542326278594, −4.28597972795277125188036131091, −4.20519312046796208485193517784, −4.16564523352090037701538168768, −3.62335770986501353970037250780, −3.60768974297536016359389490388, −3.46172131490042659473916346950, −3.32255847924512262847848311483, −3.14691357573419607020384144070, −3.14154801717236225919931703717, −2.65373226129974490529725176771, −2.60743172684876293927640633048, −2.58811194199752644047495856550, −2.49292933297905422831706578576, −2.49201948616089429876807818676, −2.42444030761923594410837368434, −1.99596305248834091842092385569, −1.66661355496970272230647656251, −1.41300228621107213104338394486, −1.40249609117630693939587679186, −1.02054784796983291449167355497, −0.966082243953473213882923843641, 0, 0, 0, 0, 0, 0, 0.966082243953473213882923843641, 1.02054784796983291449167355497, 1.40249609117630693939587679186, 1.41300228621107213104338394486, 1.66661355496970272230647656251, 1.99596305248834091842092385569, 2.42444030761923594410837368434, 2.49201948616089429876807818676, 2.49292933297905422831706578576, 2.58811194199752644047495856550, 2.60743172684876293927640633048, 2.65373226129974490529725176771, 3.14154801717236225919931703717, 3.14691357573419607020384144070, 3.32255847924512262847848311483, 3.46172131490042659473916346950, 3.60768974297536016359389490388, 3.62335770986501353970037250780, 4.16564523352090037701538168768, 4.20519312046796208485193517784, 4.28597972795277125188036131091, 4.38815158110018228542326278594, 4.48776180496958968650406602687, 4.70946292907760828137527104972, 4.86137399173361902895522723888

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.