L(s) = 1 | − 6·2-s + 12·4-s − 5·5-s + 8·7-s + 16·8-s + 30·10-s + 29·11-s + 20·13-s − 48·14-s − 144·16-s + 38·17-s + 57·19-s − 60·20-s − 174·22-s + 14·23-s + 267·25-s − 120·26-s + 96·28-s − 362·29-s − 88·31-s + 288·32-s − 228·34-s − 40·35-s + 384·37-s − 342·38-s − 80·40-s + 432·41-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 3/2·4-s − 0.447·5-s + 0.431·7-s + 0.707·8-s + 0.948·10-s + 0.794·11-s + 0.426·13-s − 0.916·14-s − 9/4·16-s + 0.542·17-s + 0.688·19-s − 0.670·20-s − 1.68·22-s + 0.126·23-s + 2.13·25-s − 0.905·26-s + 0.647·28-s − 2.31·29-s − 0.509·31-s + 1.59·32-s − 1.15·34-s − 0.193·35-s + 1.70·37-s − 1.45·38-s − 0.316·40-s + 1.64·41-s + ⋯ |
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.947508436 |
L(21) |
≈ |
2.947508436 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+pT+p2T2)3 |
| 3 | 1 |
| 7 | 1−8T−22pT2+139p2T3−22p4T4−8p6T5+p9T6 |
good | 5 | 1+pT−242T2−1291T3+31349T4+94946T5−3671531T6+94946p3T7+31349p6T8−1291p9T9−242p12T10+p16T11+p18T12 |
| 11 | 1−29T−2564T2+60061T3+4759283T4−58883294T5−5900798285T6−58883294p3T7+4759283p6T8+60061p9T9−2564p12T10−29p15T11+p18T12 |
| 13 | (1−10T+6508T2−43337T3+6508p3T4−10p6T5+p9T6)2 |
| 17 | 1−38T−10148T2+214318T3+64981502T4−384215870T5−350665294625T6−384215870p3T7+64981502p6T8+214318p9T9−10148p12T10−38p15T11+p18T12 |
| 19 | 1−3pT−14838T2+254831T3+166435821T4−166961520T5−1338012994557T6−166961520p3T7+166435821p6T8+254831p9T9−14838p12T10−3p16T11+p18T12 |
| 23 | 1−14T−24188T2+1111042T3+287732402T4−11473339118T5−3133578440789T6−11473339118p3T7+287732402p6T8+1111042p9T9−24188p12T10−14p15T11+p18T12 |
| 29 | (1+181T+44385T2+9691225T3+44385p3T4+181p6T5+p9T6)2 |
| 31 | 1+88T−19176T2+2427606T3−74706896T4−63836425952T5+24418143111607T6−63836425952p3T7−74706896p6T8+2427606p9T9−19176p12T10+88p15T11+p18T12 |
| 37 | 1−384T+6558T2+23609678T3−2205845910T4−979004345454T5+385902155257863T6−979004345454p3T7−2205845910p6T8+23609678p9T9+6558p12T10−384p15T11+p18T12 |
| 41 | (1−216T+4638pT2−29937897T3+4638p4T4−216p6T5+p9T6)2 |
| 43 | (1+363T+118869T2+51110485T3+118869p3T4+363p6T5+p9T6)2 |
| 47 | 1−183T−263418T2+21765813T3+50364860037T4−1987643355060T5−5827318049035865T6−1987643355060p3T7+50364860037p6T8+21765813p9T9−263418p12T10−183p15T11+p18T12 |
| 53 | 1−396T−171222T2+33593058T3+26399387130T4+3085597337094T5−6213949690744577T6+3085597337094p3T7+26399387130p6T8+33593058p9T9−171222p12T10−396p15T11+p18T12 |
| 59 | 1−427T−20846T2+184632833T3−989648387pT4−9945164910982T5+19570132793727955T6−9945164910982p3T7−989648387p7T8+184632833p9T9−20846p12T10−427p15T11+p18T12 |
| 61 | 1+7pT−325797T2−168225036T3+60617986357T4+21366910723417T5−7516285932983282T6+21366910723417p3T7+60617986357p6T8−168225036p9T9−325797p12T10+7p16T11+p18T12 |
| 67 | 1+32T−507154T2+145892682T3+107477835646T4−39824972320442T5−19149017206317005T6−39824972320442p3T7+107477835646p6T8+145892682p9T9−507154p12T10+32p15T11+p18T12 |
| 71 | (1+395T+772713T2+166861721T3+772713p3T4+395p6T5+p9T6)2 |
| 73 | 1−373T−1002964T2+125934813T3+757146856945T4−40185482983214T5−334578208592440487T6−40185482983214p3T7+757146856945p6T8+125934813p9T9−1002964p12T10−373p15T11+p18T12 |
| 79 | 1−1364T+318072T2+576829470T3−209637930452T4−324379754397308T5+410997275277132367T6−324379754397308p3T7−209637930452p6T8+576829470p9T9+318072p12T10−1364p15T11+p18T12 |
| 83 | (1+77T+1084713T2+260668709T3+1084713p3T4+77p6T5+p9T6)2 |
| 89 | 1−1233T−175281T2+162125424T3+290804803809T4+425032882464177T5−812862837191430722T6+425032882464177p3T7+290804803809p6T8+162125424p9T9−175281p12T10−1233p15T11+p18T12 |
| 97 | (1−590T+2642891T2−1009069940T3+2642891p3T4−590p6T5+p9T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.86148471111733568546121503502, −5.52745225849444771746830944257, −5.22991046504957596186149501329, −5.17104654916587106817644210623, −5.09249209372309443201355917510, −4.68145162377822280577453766086, −4.62475228324082912094816400040, −4.23619399408778225734081085620, −4.23296080620778120181288038116, −3.97847843779030189653846359056, −3.87748138054753054719000194904, −3.34608442781561910538730058059, −3.32469621477230505613751270311, −3.28408527425718895105221551539, −2.90211616142841532217637152364, −2.54205317263844294492702781335, −2.32691300124844405972830248087, −1.95452282616591445564969828142, −1.83250347677178253703460338138, −1.49061274589125013420155109191, −1.32209824682547876094861521346, −0.968269276729676681173141192169, −0.60853727991463714428019050016, −0.57738221664454986667404265357, −0.42045621464521149117025341185,
0.42045621464521149117025341185, 0.57738221664454986667404265357, 0.60853727991463714428019050016, 0.968269276729676681173141192169, 1.32209824682547876094861521346, 1.49061274589125013420155109191, 1.83250347677178253703460338138, 1.95452282616591445564969828142, 2.32691300124844405972830248087, 2.54205317263844294492702781335, 2.90211616142841532217637152364, 3.28408527425718895105221551539, 3.32469621477230505613751270311, 3.34608442781561910538730058059, 3.87748138054753054719000194904, 3.97847843779030189653846359056, 4.23296080620778120181288038116, 4.23619399408778225734081085620, 4.62475228324082912094816400040, 4.68145162377822280577453766086, 5.09249209372309443201355917510, 5.17104654916587106817644210623, 5.22991046504957596186149501329, 5.52745225849444771746830944257, 5.86148471111733568546121503502
Plot not available for L-functions of degree greater than 10.