L(s) = 1 | + 3·5-s − 8-s + 6·11-s − 3·13-s + 3·19-s + 6·23-s + 9·25-s − 9·27-s − 3·29-s − 3·31-s + 12·37-s − 3·40-s − 12·41-s − 6·43-s + 24·47-s + 18·55-s − 24·59-s − 3·61-s − 9·65-s + 3·67-s − 12·71-s + 3·73-s + 33·79-s − 6·88-s + 21·89-s + 9·95-s − 15·97-s + ⋯ |
L(s) = 1 | + 1.34·5-s − 0.353·8-s + 1.80·11-s − 0.832·13-s + 0.688·19-s + 1.25·23-s + 9/5·25-s − 1.73·27-s − 0.557·29-s − 0.538·31-s + 1.97·37-s − 0.474·40-s − 1.87·41-s − 0.914·43-s + 3.50·47-s + 2.42·55-s − 3.12·59-s − 0.384·61-s − 1.11·65-s + 0.366·67-s − 1.42·71-s + 0.351·73-s + 3.71·79-s − 0.639·88-s + 2.22·89-s + 0.923·95-s − 1.52·97-s + ⋯ |
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.792572965 |
L(21) |
≈ |
4.792572965 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T3+T6 |
| 3 | 1+p2T3+p3T6 |
| 7 | 1+T3+T6 |
good | 5 | 1−3T+18T3−36T4−3p2T5+379T6−3p3T7−36p2T8+18p3T9−3p5T11+p6T12 |
| 11 | 1−6T+18T2−36T3−108T4+912T5−3203T6+912pT7−108p2T8−36p3T9+18p4T10−6p5T11+p6T12 |
| 13 | 1+3T+6T2+8T3−27T4−891T5−3483T6−891pT7−27p2T8+8p3T9+6p4T10+3p5T11+p6T12 |
| 17 | 1−42T2+18T3+1050T4−378T5−20081T6−378pT7+1050p2T8+18p3T9−42p4T10+p6T12 |
| 19 | 1−3T−24T2+23T3+279T4+666T5−6501T6+666pT7+279p2T8+23p3T9−24p4T10−3p5T11+p6T12 |
| 23 | 1−6T−36T2+396T3−810T4−5874T5+51733T6−5874pT7−810p2T8+396p3T9−36p4T10−6p5T11+p6T12 |
| 29 | 1+3T+108T2+90T3+4851T4−3507T5+149293T6−3507pT7+4851p2T8+90p3T9+108p4T10+3p5T11+p6T12 |
| 31 | 1+3T+24T2+296T3+1530T4+7119T5+55665T6+7119pT7+1530p2T8+296p3T9+24p4T10+3p5T11+p6T12 |
| 37 | 1−12T+21T2+284T3+18T4−15444T5+118797T6−15444pT7+18p2T8+284p3T9+21p4T10−12p5T11+p6T12 |
| 41 | 1+12T+144T2+1044T3+9216T4+58152T5+440263T6+58152pT7+9216p2T8+1044p3T9+144p4T10+12p5T11+p6T12 |
| 43 | 1+6T−6T2+284T3−684T4−7920T5+123837T6−7920pT7−684p2T8+284p3T9−6p4T10+6p5T11+p6T12 |
| 47 | 1−24T+306T2−2844T3+25254T4−215106T5+1621333T6−215106pT7+25254p2T8−2844p3T9+306p4T10−24p5T11+p6T12 |
| 53 | (1+42T2+153T3+42pT4+p3T6)2 |
| 59 | 1+24T+252T2+1395T3−2475T4−150699T5−1633823T6−150699pT7−2475p2T8+1395p3T9+252p4T10+24p5T11+p6T12 |
| 61 | 1+3T+114T2+926T3+12897T4+70029T5+1006281T6+70029pT7+12897p2T8+926p3T9+114p4T10+3p5T11+p6T12 |
| 67 | 1−3T−96T2+1094T3−3735T4−48879T5+940191T6−48879pT7−3735p2T8+1094p3T9−96p4T10−3p5T11+p6T12 |
| 71 | 1+12T−24T2−738T3−228T4+5556T5−117857T6+5556pT7−228p2T8−738p3T9−24p4T10+12p5T11+p6T12 |
| 73 | 1−3T−96T2+635T3+1935T4−19872T5+150873T6−19872pT7+1935p2T8+635p3T9−96p4T10−3p5T11+p6T12 |
| 79 | 1−33T+492T2−4402T3+17532T4+134901T5−2452347T6+134901pT7+17532p2T8−4402p3T9+492p4T10−33p5T11+p6T12 |
| 83 | 1+144T2+774T3+252pT4+72810T5+2086741T6+72810pT7+252p3T8+774p3T9+144p4T10+p6T12 |
| 89 | 1−21T+138T2+891T3−11325T4−132708T5+2900905T6−132708pT7−11325p2T8+891p3T9+138p4T10−21p5T11+p6T12 |
| 97 | 1+15T+120T2+2138T3+14679T4+127917T5+2485869T6+127917pT7+14679p2T8+2138p3T9+120p4T10+15p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.19469640954300286742955724894, −5.89938642267690145183335393344, −5.88689647891834501647123125427, −5.77420506695725453505405418021, −5.33353953963057264739781476701, −5.33058048778540071897575458397, −5.25446407535737281669262475341, −4.88112144170358287409169555860, −4.48056608614308113383340474784, −4.44483479195359510960871454432, −4.42752731918502751554233371761, −4.42246261116115003567997277719, −3.63334277362969873672709770248, −3.59192359598209276680384063153, −3.51306862946926595578816879310, −3.16563681769817311945100985196, −3.00748067489457519661814878869, −2.98565728353735754904141128032, −2.25936344599167431064747569560, −2.13104643515048270328639315970, −1.99239890228082090450145361907, −1.88344327181844075184732071251, −1.36587140397128264326838243014, −0.837443845706437985596845036752, −0.75551355626911789136133263968,
0.75551355626911789136133263968, 0.837443845706437985596845036752, 1.36587140397128264326838243014, 1.88344327181844075184732071251, 1.99239890228082090450145361907, 2.13104643515048270328639315970, 2.25936344599167431064747569560, 2.98565728353735754904141128032, 3.00748067489457519661814878869, 3.16563681769817311945100985196, 3.51306862946926595578816879310, 3.59192359598209276680384063153, 3.63334277362969873672709770248, 4.42246261116115003567997277719, 4.42752731918502751554233371761, 4.44483479195359510960871454432, 4.48056608614308113383340474784, 4.88112144170358287409169555860, 5.25446407535737281669262475341, 5.33058048778540071897575458397, 5.33353953963057264739781476701, 5.77420506695725453505405418021, 5.88689647891834501647123125427, 5.89938642267690145183335393344, 6.19469640954300286742955724894
Plot not available for L-functions of degree greater than 10.