L(s) = 1 | − 3·2-s + 3·4-s + 2·5-s − 4·7-s + 2·8-s − 6·10-s − 2·11-s + 8·13-s + 12·14-s − 9·16-s + 4·17-s − 3·19-s + 6·20-s + 6·22-s − 14·23-s − 15·25-s − 24·26-s − 12·28-s + 5·29-s + 20·31-s + 9·32-s − 12·34-s − 8·35-s + 3·37-s + 9·38-s + 4·40-s − 6·43-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 3/2·4-s + 0.894·5-s − 1.51·7-s + 0.707·8-s − 1.89·10-s − 0.603·11-s + 2.21·13-s + 3.20·14-s − 9/4·16-s + 0.970·17-s − 0.688·19-s + 1.34·20-s + 1.27·22-s − 2.91·23-s − 3·25-s − 4.70·26-s − 2.26·28-s + 0.928·29-s + 3.59·31-s + 1.59·32-s − 2.05·34-s − 1.35·35-s + 0.493·37-s + 1.45·38-s + 0.632·40-s − 0.914·43-s + ⋯ |
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((26⋅318⋅76)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5460866819 |
L(21) |
≈ |
0.5460866819 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T+T2)3 |
| 3 | 1 |
| 7 | 1+4T+2pT2+55T3+2p2T4+4p2T5+p3T6 |
good | 5 | (1−T+9T2−13T3+9pT4−p2T5+p3T6)2 |
| 11 | (1+T+27T2+25T3+27pT4+p2T5+p3T6)2 |
| 13 | 1−8T+24T2−42T3−32T4+1408T5−7901T6+1408pT7−32p2T8−42p3T9+24p4T10−8p5T11+p6T12 |
| 17 | 1−4T−23T2+4pT3+410T4−220T5−8111T6−220pT7+410p2T8+4p4T9−23p4T10−4p5T11+p6T12 |
| 19 | 1+3T−12T2−67T3−153T4+54T5+6315T6+54pT7−153p2T8−67p3T9−12p4T10+3p5T11+p6T12 |
| 23 | (1+7T+81T2+325T3+81pT4+7p2T5+p3T6)2 |
| 29 | 1−5T+4T2−251T3+197T4+3418T5+20293T6+3418pT7+197p2T8−251p3T9+4p4T10−5p5T11+p6T12 |
| 31 | 1−20T+6pT2−1398T3+10342T4−62234T5+331987T6−62234pT7+10342p2T8−1398p3T9+6p5T10−20p5T11+p6T12 |
| 37 | (1−11T+pT2)3(1+10T+pT2)3 |
| 41 | 1−90T2−18T3+4410T4+810T5−194177T6+810pT7+4410p2T8−18p3T9−90p4T10+p6T12 |
| 43 | (1−12T−6T2+547T3−6pT4−12p2T5+p3T6)(1+18T+198T2+1519T3+198pT4+18p2T5+p3T6) |
| 47 | 1−9T−6T2+531T3−2433T4−3438T5+104623T6−3438pT7−2433p2T8+531p3T9−6p4T10−9p5T11+p6T12 |
| 53 | 1+15T+33T3+13635T4+60360T5−225155T6+60360pT7+13635p2T8+33p3T9+15p5T11+p6T12 |
| 59 | 1−14T−20T2+154T3+11666T4−35126T5−499301T6−35126pT7+11666p2T8+154p3T9−20p4T10−14p5T11+p6T12 |
| 61 | 1−8T−114T2+342T3+13762T4−13214T5−937217T6−13214pT7+13762p2T8+342p3T9−114p4T10−8p5T11+p6T12 |
| 67 | 1−T−88T2−243T3+2035T4+14290T5+72259T6+14290pT7+2035p2T8−243p3T9−88p4T10−p5T11+p6T12 |
| 71 | (1+7T+15T2−599T3+15pT4+7p2T5+p3T6)2 |
| 73 | 1−19T+134T2−27T3−5759T4+41986T5−314903T6+41986pT7−5759p2T8−27p3T9+134p4T10−19p5T11+p6T12 |
| 79 | 1−5T−138T2+123T3+11347T4+21118T5−1048937T6+21118pT7+11347p2T8+123p3T9−138p4T10−5p5T11+p6T12 |
| 83 | 1+2T−182T2+2T3+18788T4−13564T5−1721225T6−13564pT7+18788p2T8+2p3T9−182p4T10+2p5T11+p6T12 |
| 89 | 1−9T−144T2+1197T3+16101T4−73314T5−1141967T6−73314pT7+16101p2T8+1197p3T9−144p4T10−9p5T11+p6T12 |
| 97 | 1−28T+281T2−2724T3+45178T4−388196T5+2169217T6−388196pT7+45178p2T8−2724p3T9+281p4T10−28p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.33494758858488591759251296799, −6.02304779982039994760018645355, −5.89381929066827786350808604127, −5.67587743052420171466070092200, −5.65171965761350440612036963254, −5.55940084735348107065927736712, −5.06043877812093635130566172818, −4.81664585564264533858711100717, −4.81146958152562143543122396892, −4.35302998245710172781996760259, −4.19174952634560981867959741388, −3.99317401508695538031094859079, −3.86472451637733685311821579134, −3.69721634376078247122664610306, −3.60050624706311344299279063644, −2.99197892063502348043752662188, −2.97002455780179579234501584556, −2.58332120179096718550293936343, −2.55147765920002646137517570120, −1.92734219114311631730865400329, −1.80486715827586510244283793887, −1.72543276160858166446234379667, −1.21296200663693563952143453751, −0.64848224129327926610869568510, −0.47917294819184509109412475082,
0.47917294819184509109412475082, 0.64848224129327926610869568510, 1.21296200663693563952143453751, 1.72543276160858166446234379667, 1.80486715827586510244283793887, 1.92734219114311631730865400329, 2.55147765920002646137517570120, 2.58332120179096718550293936343, 2.97002455780179579234501584556, 2.99197892063502348043752662188, 3.60050624706311344299279063644, 3.69721634376078247122664610306, 3.86472451637733685311821579134, 3.99317401508695538031094859079, 4.19174952634560981867959741388, 4.35302998245710172781996760259, 4.81146958152562143543122396892, 4.81664585564264533858711100717, 5.06043877812093635130566172818, 5.55940084735348107065927736712, 5.65171965761350440612036963254, 5.67587743052420171466070092200, 5.89381929066827786350808604127, 6.02304779982039994760018645355, 6.33494758858488591759251296799
Plot not available for L-functions of degree greater than 10.