L(s) = 1 | − 3·9-s + 12·11-s − 4·19-s − 5·25-s + 20·29-s − 24·31-s − 20·41-s + 42·49-s − 12·59-s + 4·61-s − 16·71-s + 40·79-s + 6·81-s + 44·89-s − 36·99-s − 60·101-s + 24·109-s + 38·121-s − 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 9-s + 3.61·11-s − 0.917·19-s − 25-s + 3.71·29-s − 4.31·31-s − 3.12·41-s + 6·49-s − 1.56·59-s + 0.512·61-s − 1.89·71-s + 4.50·79-s + 2/3·81-s + 4.66·89-s − 3.61·99-s − 5.97·101-s + 2.29·109-s + 3.45·121-s − 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((224⋅36⋅56⋅136)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((224⋅36⋅56⋅136)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
13.08524835 |
L(21) |
≈ |
13.08524835 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+T2)3 |
| 5 | 1+pT2+8T3+p2T4+p3T6 |
| 13 | (1+T2)3 |
good | 7 | (1−pT2)6 |
| 11 | (1−6T+35T2−112T3+35pT4−6p2T5+p3T6)2 |
| 17 | 1−46T2+1439T4−28068T6+1439p2T8−46p4T10+p6T12 |
| 19 | (1+2T+33T2+92T3+33pT4+2p2T5+p3T6)2 |
| 23 | 1−54T2+1871T4−46868T6+1871p2T8−54p4T10+p6T12 |
| 29 | (1−10T+43T2−108T3+43pT4−10p2T5+p3T6)2 |
| 31 | (1+12T+101T2+584T3+101pT4+12p2T5+p3T6)2 |
| 37 | 1−130T2+9335T4−417660T6+9335p2T8−130p4T10+p6T12 |
| 41 | (1+10T+89T2+488T3+89pT4+10p2T5+p3T6)2 |
| 43 | 1−202T2+19015T4−1043212T6+19015p2T8−202p4T10+p6T12 |
| 47 | 1−2pT2+7139T4−397884T6+7139p2T8−2p5T10+p6T12 |
| 53 | 1−130T2+13655T4−792060T6+13655p2T8−130p4T10+p6T12 |
| 59 | (1+6T+99T2+752T3+99pT4+6p2T5+p3T6)2 |
| 61 | (1−2T+151T2−212T3+151pT4−2p2T5+p3T6)2 |
| 67 | 1−130T2+12871T4−1093564T6+12871p2T8−130p4T10+p6T12 |
| 71 | (1+8T+215T2+1072T3+215pT4+8p2T5+p3T6)2 |
| 73 | 1−106T2+14783T4−1127628T6+14783p2T8−106p4T10+p6T12 |
| 79 | (1−20T+345T2−3320T3+345pT4−20p2T5+p3T6)2 |
| 83 | 1−358T2+62555T4−6541356T6+62555p2T8−358p4T10+p6T12 |
| 89 | (1−22T+361T2−3672T3+361pT4−22p2T5+p3T6)2 |
| 97 | (1−158T2+p2T4)3 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.58876805687438348338886408060, −4.22658777644963277224711219020, −4.07280584953882041810949398383, −3.88912970204085948270739178323, −3.84284258198109916668165331117, −3.77789327831133070368561813568, −3.77085828579888510112810546576, −3.56479881321858100176329149335, −3.55415593881964060690529633781, −3.02697237492869481377911624690, −2.99047286123964886112421061733, −2.90570967842718281498014123252, −2.61763409108892445073203585862, −2.45703590356028158849151447077, −2.43635022999084056155742735816, −2.14746807883972408889166258360, −1.79708542088910533601733190947, −1.65211422586707982345360402373, −1.64811885978877486401605361282, −1.47437469455835327633122598897, −1.45748957006103370277085726975, −0.71317089395745856639903613525, −0.69706277352882374359123859339, −0.57406262764946145722890282107, −0.43442245076966229069987308226,
0.43442245076966229069987308226, 0.57406262764946145722890282107, 0.69706277352882374359123859339, 0.71317089395745856639903613525, 1.45748957006103370277085726975, 1.47437469455835327633122598897, 1.64811885978877486401605361282, 1.65211422586707982345360402373, 1.79708542088910533601733190947, 2.14746807883972408889166258360, 2.43635022999084056155742735816, 2.45703590356028158849151447077, 2.61763409108892445073203585862, 2.90570967842718281498014123252, 2.99047286123964886112421061733, 3.02697237492869481377911624690, 3.55415593881964060690529633781, 3.56479881321858100176329149335, 3.77085828579888510112810546576, 3.77789327831133070368561813568, 3.84284258198109916668165331117, 3.88912970204085948270739178323, 4.07280584953882041810949398383, 4.22658777644963277224711219020, 4.58876805687438348338886408060
Plot not available for L-functions of degree greater than 10.