# Properties

 Label 12-3120e6-1.1-c1e6-0-3 Degree $12$ Conductor $9.224\times 10^{20}$ Sign $1$ Analytic cond. $2.39105\times 10^{8}$ Root an. cond. $4.99132$ Motivic weight $1$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 3·9-s + 12·11-s − 4·19-s − 5·25-s + 20·29-s − 24·31-s − 20·41-s + 42·49-s − 12·59-s + 4·61-s − 16·71-s + 40·79-s + 6·81-s + 44·89-s − 36·99-s − 60·101-s + 24·109-s + 38·121-s − 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
 L(s)  = 1 − 9-s + 3.61·11-s − 0.917·19-s − 25-s + 3.71·29-s − 4.31·31-s − 3.12·41-s + 6·49-s − 1.56·59-s + 0.512·61-s − 1.89·71-s + 4.50·79-s + 2/3·81-s + 4.66·89-s − 3.61·99-s − 5.97·101-s + 2.29·109-s + 3.45·121-s − 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{6} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{6} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$12$$ Conductor: $$2^{24} \cdot 3^{6} \cdot 5^{6} \cdot 13^{6}$$ Sign: $1$ Analytic conductor: $$2.39105\times 10^{8}$$ Root analytic conductor: $$4.99132$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: Trivial Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(12,\ 2^{24} \cdot 3^{6} \cdot 5^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$13.08524835$$ $$L(\frac12)$$ $$\approx$$ $$13.08524835$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$( 1 + T^{2} )^{3}$$
5 $$1 + p T^{2} + 8 T^{3} + p^{2} T^{4} + p^{3} T^{6}$$
13 $$( 1 + T^{2} )^{3}$$
good7 $$( 1 - p T^{2} )^{6}$$
11 $$( 1 - 6 T + 35 T^{2} - 112 T^{3} + 35 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
17 $$1 - 46 T^{2} + 1439 T^{4} - 28068 T^{6} + 1439 p^{2} T^{8} - 46 p^{4} T^{10} + p^{6} T^{12}$$
19 $$( 1 + 2 T + 33 T^{2} + 92 T^{3} + 33 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
23 $$1 - 54 T^{2} + 1871 T^{4} - 46868 T^{6} + 1871 p^{2} T^{8} - 54 p^{4} T^{10} + p^{6} T^{12}$$
29 $$( 1 - 10 T + 43 T^{2} - 108 T^{3} + 43 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
31 $$( 1 + 12 T + 101 T^{2} + 584 T^{3} + 101 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
37 $$1 - 130 T^{2} + 9335 T^{4} - 417660 T^{6} + 9335 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12}$$
41 $$( 1 + 10 T + 89 T^{2} + 488 T^{3} + 89 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
43 $$1 - 202 T^{2} + 19015 T^{4} - 1043212 T^{6} + 19015 p^{2} T^{8} - 202 p^{4} T^{10} + p^{6} T^{12}$$
47 $$1 - 2 p T^{2} + 7139 T^{4} - 397884 T^{6} + 7139 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12}$$
53 $$1 - 130 T^{2} + 13655 T^{4} - 792060 T^{6} + 13655 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12}$$
59 $$( 1 + 6 T + 99 T^{2} + 752 T^{3} + 99 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
61 $$( 1 - 2 T + 151 T^{2} - 212 T^{3} + 151 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
67 $$1 - 130 T^{2} + 12871 T^{4} - 1093564 T^{6} + 12871 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12}$$
71 $$( 1 + 8 T + 215 T^{2} + 1072 T^{3} + 215 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
73 $$1 - 106 T^{2} + 14783 T^{4} - 1127628 T^{6} + 14783 p^{2} T^{8} - 106 p^{4} T^{10} + p^{6} T^{12}$$
79 $$( 1 - 20 T + 345 T^{2} - 3320 T^{3} + 345 p T^{4} - 20 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
83 $$1 - 358 T^{2} + 62555 T^{4} - 6541356 T^{6} + 62555 p^{2} T^{8} - 358 p^{4} T^{10} + p^{6} T^{12}$$
89 $$( 1 - 22 T + 361 T^{2} - 3672 T^{3} + 361 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} )^{2}$$
97 $$( 1 - 158 T^{2} + p^{2} T^{4} )^{3}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$