L(s) = 1 | + 2·5-s − 3·9-s + 6·11-s − 4·19-s + 25-s + 16·29-s − 16·31-s − 16·41-s − 6·45-s + 10·49-s + 12·55-s − 16·59-s + 4·61-s + 24·71-s − 12·79-s + 6·81-s − 4·89-s − 8·95-s − 18·99-s − 80·101-s + 12·109-s + 21·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 9-s + 1.80·11-s − 0.917·19-s + 1/5·25-s + 2.97·29-s − 2.87·31-s − 2.49·41-s − 0.894·45-s + 10/7·49-s + 1.61·55-s − 2.08·59-s + 0.512·61-s + 2.84·71-s − 1.35·79-s + 2/3·81-s − 0.423·89-s − 0.820·95-s − 1.80·99-s − 7.96·101-s + 1.14·109-s + 1.90·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=((224⋅36⋅56⋅116)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((224⋅36⋅56⋅116)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.564574126 |
L(21) |
≈ |
3.564574126 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+T2)3 |
| 5 | 1−2T+3T2−12T3+3pT4−2p2T5+p3T6 |
| 11 | (1−T)6 |
good | 7 | 1−10T2+31T4−124T6+31p2T8−10p4T10+p6T12 |
| 13 | 1+14T2+311T4+4692T6+311p2T8+14p4T10+p6T12 |
| 17 | 1−30T2+1151T4−18164T6+1151p2T8−30p4T10+p6T12 |
| 19 | (1+2T+5T2−108T3+5pT4+2p2T5+p3T6)2 |
| 23 | (1−30T2+p2T4)3 |
| 29 | (1−8T+3pT2−432T3+3p2T4−8p2T5+p3T6)2 |
| 31 | (1+8T+101T2+480T3+101pT4+8p2T5+p3T6)2 |
| 37 | 1−174T2+13943T4−655652T6+13943p2T8−174p4T10+p6T12 |
| 41 | (1+8T+3pT2+624T3+3p2T4+8p2T5+p3T6)2 |
| 43 | 1−226T2+22423T4−1251628T6+22423p2T8−226p4T10+p6T12 |
| 47 | 1−186T2+17903T4−1043180T6+17903p2T8−186p4T10+p6T12 |
| 53 | 1−190T2+20375T4−1316100T6+20375p2T8−190p4T10+p6T12 |
| 59 | (1+8T+113T2+1024T3+113pT4+8p2T5+p3T6)2 |
| 61 | (1−2T+131T2−204T3+131pT4−2p2T5+p3T6)2 |
| 67 | 1−226T2+28103T4−2235900T6+28103p2T8−226p4T10+p6T12 |
| 71 | (1−12T+245T2−1688T3+245pT4−12p2T5+p3T6)2 |
| 73 | 1−234T2+27279T4−2258332T6+27279p2T8−234p4T10+p6T12 |
| 79 | (1+6T+233T2+940T3+233pT4+6p2T5+p3T6)2 |
| 83 | 1−486T2+99383T4−10945028T6+99383p2T8−486p4T10+p6T12 |
| 89 | (1+2T+255T2+348T3+255pT4+2p2T5+p3T6)2 |
| 97 | 1−454T2+94543T4−11606932T6+94543p2T8−454p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.46594944128980453040777266346, −4.42885752643919455481606105279, −4.39892290537778238486795716724, −4.19774384854639048745462260440, −3.90567108098387751749639048552, −3.86091782906617814168235339385, −3.65507327557211832922316719412, −3.52303173437102395124376152919, −3.50543622828446913261807195992, −3.25956660427373176245916677486, −2.97215898817102099861262058599, −2.90823864962864757402690948332, −2.77514270505209182235749349670, −2.42771267176284252716214710961, −2.40387526881758131931601682775, −2.39371914054203298518144493601, −1.91266082906115039153081005636, −1.77532473541198652605608151932, −1.72359574976105642656954148587, −1.46287185118712345549711804443, −1.28855809257500958653215153678, −1.10955926487437224064424706370, −0.841842234192493177452283137314, −0.34006363423594707186063484846, −0.27579647668228536578355633447,
0.27579647668228536578355633447, 0.34006363423594707186063484846, 0.841842234192493177452283137314, 1.10955926487437224064424706370, 1.28855809257500958653215153678, 1.46287185118712345549711804443, 1.72359574976105642656954148587, 1.77532473541198652605608151932, 1.91266082906115039153081005636, 2.39371914054203298518144493601, 2.40387526881758131931601682775, 2.42771267176284252716214710961, 2.77514270505209182235749349670, 2.90823864962864757402690948332, 2.97215898817102099861262058599, 3.25956660427373176245916677486, 3.50543622828446913261807195992, 3.52303173437102395124376152919, 3.65507327557211832922316719412, 3.86091782906617814168235339385, 3.90567108098387751749639048552, 4.19774384854639048745462260440, 4.39892290537778238486795716724, 4.42885752643919455481606105279, 4.46594944128980453040777266346
Plot not available for L-functions of degree greater than 10.