Properties

Label 12-2520e6-1.1-c1e6-0-1
Degree $12$
Conductor $2.561\times 10^{20}$
Sign $1$
Analytic cond. $6.63843\times 10^{7}$
Root an. cond. $4.48578$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s + 4·19-s + 25-s − 12·29-s − 28·31-s + 20·41-s − 3·49-s + 8·55-s − 16·59-s + 4·61-s + 36·71-s − 8·79-s − 12·89-s + 8·95-s + 4·101-s − 44·109-s + 18·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s − 56·155-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s + 0.917·19-s + 1/5·25-s − 2.22·29-s − 5.02·31-s + 3.12·41-s − 3/7·49-s + 1.07·55-s − 2.08·59-s + 0.512·61-s + 4.27·71-s − 0.900·79-s − 1.27·89-s + 0.820·95-s + 0.398·101-s − 4.21·109-s + 1.63·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.99·145-s + 0.0819·149-s + 0.0813·151-s − 4.49·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(6.63843\times 10^{7}\)
Root analytic conductor: \(4.48578\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3426493832\)
\(L(\frac12)\) \(\approx\) \(0.3426493832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 2 T + 3 T^{2} - 12 T^{3} + 3 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
7 \( ( 1 + T^{2} )^{3} \)
good11 \( ( 1 - 2 T - 3 T^{2} + 60 T^{3} - 3 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 - 18 T^{2} - 25 T^{4} + 2404 T^{6} - 25 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 + 26 T^{2} + 1007 T^{4} + 876 p T^{6} + 1007 p^{2} T^{8} + 26 p^{4} T^{10} + p^{6} T^{12} \)
19 \( ( 1 - 2 T - 3 T^{2} + 124 T^{3} - 3 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
23 \( 1 + 6 T^{2} + 1151 T^{4} + 8788 T^{6} + 1151 p^{2} T^{8} + 6 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 + 2 T + p T^{2} )^{6} \)
31 \( ( 1 + 14 T + 145 T^{2} + 908 T^{3} + 145 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 46 T^{2} + 2423 T^{4} - 52260 T^{6} + 2423 p^{2} T^{8} - 46 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 - 10 T + 143 T^{2} - 812 T^{3} + 143 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 146 T^{2} + 11287 T^{4} - 585692 T^{6} + 11287 p^{2} T^{8} - 146 p^{4} T^{10} + p^{6} T^{12} \)
47 \( ( 1 - p T^{2} )^{6} \)
53 \( 1 - 226 T^{2} + 24215 T^{4} - 1593276 T^{6} + 24215 p^{2} T^{8} - 226 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 8 T + 113 T^{2} + 688 T^{3} + 113 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 2 T - 29 T^{2} - 140 T^{3} - 29 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 146 T^{2} + 6919 T^{4} - 152348 T^{6} + 6919 p^{2} T^{8} - 146 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 - 18 T + 161 T^{2} - 1204 T^{3} + 161 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 154 T^{2} + 2431 T^{4} + 519188 T^{6} + 2431 p^{2} T^{8} - 154 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 4 T + 189 T^{2} + 568 T^{3} + 189 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 306 T^{2} + 47783 T^{4} - 4793948 T^{6} + 47783 p^{2} T^{8} - 306 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 + 6 T + 143 T^{2} + 1300 T^{3} + 143 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 458 T^{2} + 97423 T^{4} - 12066764 T^{6} + 97423 p^{2} T^{8} - 458 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.62883784707766816967180510744, −4.51911600691051701372508988464, −4.10816474842377458527301731847, −4.03963000794658268848534861674, −3.98117099192982803834419094900, −3.87004944542895542504601741244, −3.82691147445236349376922991447, −3.80411767320382444556712354270, −3.37847142629164370292256774253, −3.25987671248692405012223946936, −2.96793028978664419939225707578, −2.94241494771481543429428566107, −2.86956033056346716666763021614, −2.71301144415774973400953554048, −2.17662424668150153754063380097, −2.01301994673777986623677479661, −1.97870296072467689980718950385, −1.97071937623573987081472974222, −1.88988826552485908730852657058, −1.46958243388138610139944974824, −1.22962473406320749460416140320, −1.07448574536243921297660356695, −0.935119488389049221660245941605, −0.45390589846486834668214844741, −0.06401975335964208656481400693, 0.06401975335964208656481400693, 0.45390589846486834668214844741, 0.935119488389049221660245941605, 1.07448574536243921297660356695, 1.22962473406320749460416140320, 1.46958243388138610139944974824, 1.88988826552485908730852657058, 1.97071937623573987081472974222, 1.97870296072467689980718950385, 2.01301994673777986623677479661, 2.17662424668150153754063380097, 2.71301144415774973400953554048, 2.86956033056346716666763021614, 2.94241494771481543429428566107, 2.96793028978664419939225707578, 3.25987671248692405012223946936, 3.37847142629164370292256774253, 3.80411767320382444556712354270, 3.82691147445236349376922991447, 3.87004944542895542504601741244, 3.98117099192982803834419094900, 4.03963000794658268848534861674, 4.10816474842377458527301731847, 4.51911600691051701372508988464, 4.62883784707766816967180510744

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.