L(s) = 1 | − 48·4-s + 530·13-s + 1.53e3·16-s + 836·17-s + 416·23-s + 9.73e3·25-s − 1.87e4·29-s − 2.42e4·43-s + 4.89e4·49-s − 2.54e4·52-s + 4.23e4·53-s − 3.19e3·61-s − 4.09e4·64-s − 4.01e4·68-s − 1.69e5·79-s − 1.99e4·92-s − 4.67e5·100-s − 1.38e5·101-s − 3.64e5·103-s + 5.22e4·107-s + 3.13e5·113-s + 9.01e5·116-s + 4.88e5·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 3/2·4-s + 0.869·13-s + 3/2·16-s + 0.701·17-s + 0.163·23-s + 3.11·25-s − 4.14·29-s − 1.99·43-s + 2.90·49-s − 1.30·52-s + 2.07·53-s − 0.109·61-s − 5/4·64-s − 1.05·68-s − 3.05·79-s − 0.245·92-s − 4.67·100-s − 1.35·101-s − 3.38·103-s + 0.440·107-s + 2.31·113-s + 6.22·116-s + 3.03·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + ⋯ |
Λ(s)=(=((26⋅312⋅136)s/2ΓC(s)6L(s)Λ(6−s)
Λ(s)=(=((26⋅312⋅136)s/2ΓC(s+5/2)6L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
6.117908104 |
L(21) |
≈ |
6.117908104 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p4T2)3 |
| 3 | 1 |
| 13 | 1−530T−12785pT2+92996p3T3−12785p6T4−530p10T5+p15T6 |
good | 5 | 1−9734T2+45022279T4−151321754836T6+45022279p10T8−9734p20T10+p30T12 |
| 7 | 1−998p2T2+1501179695T4−28969294894196T6+1501179695p10T8−998p22T10+p30T12 |
| 11 | 1−488550T2+122692550487T4−21659528044972276T6+122692550487p10T8−488550p20T10+p30T12 |
| 17 | (1−418T+1867887T2+596217860T3+1867887p5T4−418p10T5+p15T6)2 |
| 19 | 1−4259886T2+15059505195735T4−52704394717503498500T6+15059505195735p10T8−4259886p20T10+p30T12 |
| 23 | (1−208T+13024485T2−5279785312T3+13024485p5T4−208p10T5+p15T6)2 |
| 29 | (1+9394T+75091011T2+387910039372T3+75091011p5T4+9394p10T5+p15T6)2 |
| 31 | 1−116335670T2+6009258573309407T4−20⋯76T6+6009258573309407p10T8−116335670p20T10+p30T12 |
| 37 | 1−289018862T2+38604779572315415T4−32⋯76T6+38604779572315415p10T8−289018862p20T10+p30T12 |
| 41 | 1−461990702T2+96326950481430703T4−13⋯04T6+96326950481430703p10T8−461990702p20T10+p30T12 |
| 43 | (1+12100T+192229169T2+42503254792pT3+192229169p5T4+12100p10T5+p15T6)2 |
| 47 | 1−5196642pT2+98471047533657423T4−23⋯32T6+98471047533657423p10T8−5196642p21T10+p30T12 |
| 53 | (1−21198T+82289499T2+9230236358604T3+82289499p5T4−21198p10T5+p15T6)2 |
| 59 | 1−2269058726T2+2942781419203692343T4−25⋯56T6+2942781419203692343p10T8−2269058726p20T10+p30T12 |
| 61 | (1+1598T+927987683T2+20079713107796T3+927987683p5T4+1598p10T5+p15T6)2 |
| 67 | 1−3626333582T2+8616065023269477815T4−14⋯76T6+8616065023269477815p10T8−3626333582p20T10+p30T12 |
| 71 | 1−5654364942T2+254047452086597385pT4−37⋯88T6+254047452086597385p11T8−5654364942p20T10+p30T12 |
| 73 | 1−10335109526T2+47996850402258820223T4−12⋯28T6+47996850402258820223p10T8−10335109526p20T10+p30T12 |
| 79 | (1+84664T+9958851181T2+485196394773392T3+9958851181p5T4+84664p10T5+p15T6)2 |
| 83 | 1−22485370838T2+21⋯95T4−11⋯04T6+21⋯95p10T8−22485370838p20T10+p30T12 |
| 89 | 1−25940313102T2+31⋯55T4−22⋯68T6+31⋯55p10T8−25940313102p20T10+p30T12 |
| 97 | 1−34764784422T2+54⋯75T4−54⋯16T6+54⋯75p10T8−34764784422p20T10+p30T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.62665225768673021523670576017, −5.56135087788758856848683297164, −5.36552063976034427609362083327, −5.30125081705098699679772420701, −4.87091060317311492091443754455, −4.73139053089582003258059214155, −4.66864683987543627432447143579, −4.26912031861352398738872011437, −4.01227762182539385907210120643, −3.99004334248554720880488743533, −3.84950229464134239014966395960, −3.47281876708367259058623711348, −3.16468289705507836034764247710, −3.13724758851073491568825200625, −3.10334374090735823617379332998, −2.42126937376574835936121129463, −2.38688013680351612716556171628, −2.06720072838183849428592502977, −1.59883081265575553430319927898, −1.54004811445409200498052538396, −1.11967767587726226799828916492, −1.10631504410509656553720295572, −0.50354109323186260384007720550, −0.43622204193111135896320550062, −0.37921355488310683196211631948,
0.37921355488310683196211631948, 0.43622204193111135896320550062, 0.50354109323186260384007720550, 1.10631504410509656553720295572, 1.11967767587726226799828916492, 1.54004811445409200498052538396, 1.59883081265575553430319927898, 2.06720072838183849428592502977, 2.38688013680351612716556171628, 2.42126937376574835936121129463, 3.10334374090735823617379332998, 3.13724758851073491568825200625, 3.16468289705507836034764247710, 3.47281876708367259058623711348, 3.84950229464134239014966395960, 3.99004334248554720880488743533, 4.01227762182539385907210120643, 4.26912031861352398738872011437, 4.66864683987543627432447143579, 4.73139053089582003258059214155, 4.87091060317311492091443754455, 5.30125081705098699679772420701, 5.36552063976034427609362083327, 5.56135087788758856848683297164, 5.62665225768673021523670576017
Plot not available for L-functions of degree greater than 10.