L(s) = 1 | + 18·3-s − 4·4-s + 30·5-s + 189·9-s − 72·12-s + 540·15-s − 31·16-s − 120·20-s + 56·23-s + 525·25-s + 1.51e3·27-s + 576·31-s − 756·36-s + 332·37-s + 5.67e3·45-s + 96·47-s − 558·48-s − 802·49-s + 308·53-s + 2.08e3·59-s − 2.16e3·60-s + 248·64-s − 1.16e3·67-s + 1.00e3·69-s + 1.06e3·71-s + 9.45e3·75-s − 930·80-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 1/2·4-s + 2.68·5-s + 7·9-s − 1.73·12-s + 9.29·15-s − 0.484·16-s − 1.34·20-s + 0.507·23-s + 21/5·25-s + 10.7·27-s + 3.33·31-s − 7/2·36-s + 1.47·37-s + 18.7·45-s + 0.297·47-s − 1.67·48-s − 2.33·49-s + 0.798·53-s + 4.58·59-s − 4.64·60-s + 0.484·64-s − 2.12·67-s + 1.75·69-s + 1.77·71-s + 14.5·75-s − 1.29·80-s + ⋯ |
Λ(s)=(=((36⋅56⋅1112)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((36⋅56⋅1112)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
200.1380594 |
L(21) |
≈ |
200.1380594 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1−pT)6 |
| 5 | (1−pT)6 |
| 11 | 1 |
good | 2 | 1+p2T2+47T4+p6T6+47p6T8+p14T10+p18T12 |
| 7 | 1+802T2+304543T4+94343516T6+304543p6T8+802p12T10+p18T12 |
| 13 | 1+886pT2+58019383T4+164950568324T6+58019383p6T8+886p13T10+p18T12 |
| 17 | 1−1346T2−18224113T4+91405101604T6−18224113p6T8−1346p12T10+p18T12 |
| 19 | 1+1462pT2+381628039T4+3260386698524T6+381628039p6T8+1462p13T10+p18T12 |
| 23 | (1−28T+9957T2+1257080T3+9957p3T4−28p6T5+p9T6)2 |
| 29 | 1+107278T2+5613031079T4+173083909993924T6+5613031079p6T8+107278p12T10+p18T12 |
| 31 | (1−288T+95373T2−16398016T3+95373p3T4−288p6T5+p9T6)2 |
| 37 | (1−166T+134339T2−13813924T3+134339p3T4−166p6T5+p9T6)2 |
| 41 | 1+392550T2+65515823631T4+5956276963486324T6+65515823631p6T8+392550p12T10+p18T12 |
| 43 | 1+167898T2+17757275463T4+1598829373108364T6+17757275463p6T8+167898p12T10+p18T12 |
| 47 | (1−48T+187437T2+3225696T3+187437p3T4−48p6T5+p9T6)2 |
| 53 | (1−154T+250803T2−59517148T3+250803p3T4−154p6T5+p9T6)2 |
| 59 | (1−1040T+659337T2−334284320T3+659337p3T4−1040p6T5+p9T6)2 |
| 61 | 1+1115710T2+559401461431T4+162322226576222084T6+559401461431p6T8+1115710p12T10+p18T12 |
| 67 | (1+584T+19793T2−187697680T3+19793p3T4+584p6T5+p9T6)2 |
| 71 | (1−532T+371829T2−482157976T3+371829p3T4−532p6T5+p9T6)2 |
| 73 | 1+1476678T2+1108133530623T4+524326150985219924T6+1108133530623p6T8+1476678p12T10+p18T12 |
| 79 | 1+649210T2+356801976031T4+97641164525431436T6+356801976031p6T8+649210p12T10+p18T12 |
| 83 | 1+2530162T2+2916380468855T4+2053315560734357020T6+2916380468855p6T8+2530162p12T10+p18T12 |
| 89 | (1+342T+2024103T2+471201876T3+2024103p3T4+342p6T5+p9T6)2 |
| 97 | (1−1406T+1951919T2−1639433444T3+1951919p3T4−1406p6T5+p9T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.65373309934304937388015097981, −4.06578856020299078175997031077, −3.97379743618628166860216641732, −3.93732599849672536407076968952, −3.87414121501668631345885518995, −3.75033995049429060257948107802, −3.41739047889294735133890554364, −3.17383396434966958745570282928, −3.09247010436275058565313815379, −2.87830680894750883760537362042, −2.80037734563663105944052343802, −2.55413511531942314166241788734, −2.54611547018043129420590280641, −2.51132424948967309616672570234, −2.19244778740010749458144788440, −2.06026352859916346685841394232, −1.90064964020114025610781533867, −1.61923964591889839547319110050, −1.61779266309966773239668010028, −1.25566548165062588526259291134, −1.18083421874254433486135847690, −0.844883549829202385190923874806, −0.75158168061831881524838967917, −0.64395549302188950099032247497, −0.27604139538996374723181536907,
0.27604139538996374723181536907, 0.64395549302188950099032247497, 0.75158168061831881524838967917, 0.844883549829202385190923874806, 1.18083421874254433486135847690, 1.25566548165062588526259291134, 1.61779266309966773239668010028, 1.61923964591889839547319110050, 1.90064964020114025610781533867, 2.06026352859916346685841394232, 2.19244778740010749458144788440, 2.51132424948967309616672570234, 2.54611547018043129420590280641, 2.55413511531942314166241788734, 2.80037734563663105944052343802, 2.87830680894750883760537362042, 3.09247010436275058565313815379, 3.17383396434966958745570282928, 3.41739047889294735133890554364, 3.75033995049429060257948107802, 3.87414121501668631345885518995, 3.93732599849672536407076968952, 3.97379743618628166860216641732, 4.06578856020299078175997031077, 4.65373309934304937388015097981
Plot not available for L-functions of degree greater than 10.