L(s) = 1 | − 3·9-s − 12·11-s + 4·19-s − 5·25-s + 20·29-s + 24·31-s − 20·41-s + 42·49-s + 12·59-s + 4·61-s + 16·71-s − 40·79-s + 6·81-s + 44·89-s + 36·99-s − 60·101-s + 24·109-s + 38·121-s − 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 9-s − 3.61·11-s + 0.917·19-s − 25-s + 3.71·29-s + 4.31·31-s − 3.12·41-s + 6·49-s + 1.56·59-s + 0.512·61-s + 1.89·71-s − 4.50·79-s + 2/3·81-s + 4.66·89-s + 3.61·99-s − 5.97·101-s + 2.29·109-s + 3.45·121-s − 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((218⋅36⋅56⋅136)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅36⋅56⋅136)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.549785469 |
L(21) |
≈ |
2.549785469 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+T2)3 |
| 5 | 1+pT2+8T3+p2T4+p3T6 |
| 13 | (1+T2)3 |
good | 7 | (1−pT2)6 |
| 11 | (1+6T+35T2+112T3+35pT4+6p2T5+p3T6)2 |
| 17 | 1−46T2+1439T4−28068T6+1439p2T8−46p4T10+p6T12 |
| 19 | (1−2T+33T2−92T3+33pT4−2p2T5+p3T6)2 |
| 23 | 1−54T2+1871T4−46868T6+1871p2T8−54p4T10+p6T12 |
| 29 | (1−10T+43T2−108T3+43pT4−10p2T5+p3T6)2 |
| 31 | (1−12T+101T2−584T3+101pT4−12p2T5+p3T6)2 |
| 37 | 1−130T2+9335T4−417660T6+9335p2T8−130p4T10+p6T12 |
| 41 | (1+10T+89T2+488T3+89pT4+10p2T5+p3T6)2 |
| 43 | 1−202T2+19015T4−1043212T6+19015p2T8−202p4T10+p6T12 |
| 47 | 1−2pT2+7139T4−397884T6+7139p2T8−2p5T10+p6T12 |
| 53 | 1−130T2+13655T4−792060T6+13655p2T8−130p4T10+p6T12 |
| 59 | (1−6T+99T2−752T3+99pT4−6p2T5+p3T6)2 |
| 61 | (1−2T+151T2−212T3+151pT4−2p2T5+p3T6)2 |
| 67 | 1−130T2+12871T4−1093564T6+12871p2T8−130p4T10+p6T12 |
| 71 | (1−8T+215T2−1072T3+215pT4−8p2T5+p3T6)2 |
| 73 | 1−106T2+14783T4−1127628T6+14783p2T8−106p4T10+p6T12 |
| 79 | (1+20T+345T2+3320T3+345pT4+20p2T5+p3T6)2 |
| 83 | 1−358T2+62555T4−6541356T6+62555p2T8−358p4T10+p6T12 |
| 89 | (1−22T+361T2−3672T3+361pT4−22p2T5+p3T6)2 |
| 97 | (1−158T2+p2T4)3 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.11171818288867438888292609926, −4.78269923429936598028536343139, −4.64982929997061365432111977485, −4.63183174145057538038395255810, −4.36223527195295732273681589980, −4.10730708062395728568942631491, −3.94731023187876966275697102425, −3.91008759763318696290211277627, −3.87403364941065329325446591857, −3.25242509453202029788493913655, −3.23531791428257812801357020721, −3.05450190799556185236435560736, −2.92970900312235734574531812403, −2.68119735105710948267816707283, −2.64252810369303682756033193900, −2.62788764105150553599212179629, −2.32965637623613612762920136390, −2.22509669275629148811609855287, −2.02484172789241170997944818127, −1.61383289075840042996961143375, −1.23068546542277125054153530126, −1.02576401867867564325747385002, −0.73764770233626992639436083242, −0.67100685482534905698289186302, −0.25651970391370069379619951743,
0.25651970391370069379619951743, 0.67100685482534905698289186302, 0.73764770233626992639436083242, 1.02576401867867564325747385002, 1.23068546542277125054153530126, 1.61383289075840042996961143375, 2.02484172789241170997944818127, 2.22509669275629148811609855287, 2.32965637623613612762920136390, 2.62788764105150553599212179629, 2.64252810369303682756033193900, 2.68119735105710948267816707283, 2.92970900312235734574531812403, 3.05450190799556185236435560736, 3.23531791428257812801357020721, 3.25242509453202029788493913655, 3.87403364941065329325446591857, 3.91008759763318696290211277627, 3.94731023187876966275697102425, 4.10730708062395728568942631491, 4.36223527195295732273681589980, 4.63183174145057538038395255810, 4.64982929997061365432111977485, 4.78269923429936598028536343139, 5.11171818288867438888292609926
Plot not available for L-functions of degree greater than 10.