L(s) = 1 | − 8·4-s − 52·13-s − 69·16-s + 62·19-s − 398·25-s + 82·31-s − 1.13e3·37-s − 1.56e3·43-s + 416·52-s − 886·61-s + 766·64-s − 2.08e3·67-s + 2.39e3·73-s − 496·76-s + 984·79-s + 682·97-s + 3.18e3·100-s + 3.02e3·103-s − 2.47e3·109-s − 1.94e3·121-s − 656·124-s + 127-s + 131-s + 137-s + 139-s + 9.05e3·148-s + 149-s + ⋯ |
L(s) = 1 | − 4-s − 1.10·13-s − 1.07·16-s + 0.748·19-s − 3.18·25-s + 0.475·31-s − 5.02·37-s − 5.55·43-s + 1.10·52-s − 1.85·61-s + 1.49·64-s − 3.80·67-s + 3.84·73-s − 0.748·76-s + 1.40·79-s + 0.713·97-s + 3.18·100-s + 2.89·103-s − 2.17·109-s − 1.46·121-s − 0.475·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 5.02·148-s + 0.000549·149-s + ⋯ |
Λ(s)=(=((318⋅712)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((318⋅712)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+p3T2+133T4+425pT6+133p6T8+p15T10+p18T12 |
| 5 | 1+398T2+88267T4+13515052T6+88267p6T8+398p12T10+p18T12 |
| 11 | 1+1946T2+1291819T4−782053340T6+1291819p6T8+1946p12T10+p18T12 |
| 13 | (1+2pT+20p2T2+150062T3+20p5T4+2p7T5+p9T6)2 |
| 17 | 1+19638T2+193457043T4+1185167951260T6+193457043p6T8+19638p12T10+p18T12 |
| 19 | (1−31T+11177T2−354214T3+11177p3T4−31p6T5+p9T6)2 |
| 23 | 1+26874T2+137157615T4−1070796212084T6+137157615p6T8+26874p12T10+p18T12 |
| 29 | 1+107486T2+5558833147T4+171068655050380T6+5558833147p6T8+107486p12T10+p18T12 |
| 31 | (1−41T+55666T2−237883T3+55666p3T4−41p6T5+p9T6)2 |
| 37 | (1+566T+246688T2+61584934T3+246688p3T4+566p6T5+p9T6)2 |
| 41 | 1+201446T2+24090872899T4+1992163622083516T6+24090872899p6T8+201446p12T10+p18T12 |
| 43 | (1+783T+433368T2+140027659T3+433368p3T4+783p6T5+p9T6)2 |
| 47 | 1+127818T2+18065263059T4+2679796621113892T6+18065263059p6T8+127818p12T10+p18T12 |
| 53 | 1+680526T2+219567635127T4+41561598578306884T6+219567635127p6T8+680526p12T10+p18T12 |
| 59 | 1+252810T2+118459786923T4+17779226383468420T6+118459786923p6T8+252810p12T10+p18T12 |
| 61 | (1+443T+203324T2−18833347T3+203324p3T4+443p6T5+p9T6)2 |
| 67 | (1+1042T+867758T2+445253716T3+867758p3T4+1042p6T5+p9T6)2 |
| 71 | 1+1054578T2+491902090755T4+2420618974688108pT6+491902090755p6T8+1054578p12T10+p18T12 |
| 73 | (1−1199T+1316443T2−794269678T3+1316443p3T4−1199p6T5+p9T6)2 |
| 79 | (1−492T+608946T2−546599468T3+608946p3T4−492p6T5+p9T6)2 |
| 83 | 1−834486T2+1207789948167T4−565854790583996660T6+1207789948167p6T8−834486p12T10+p18T12 |
| 89 | 1+949814T2+691701373123T4+216133792389242716T6+691701373123p6T8+949814p12T10+p18T12 |
| 97 | (1−341T+490090T2+960147395T3+490090p3T4−341p6T5+p9T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.27290667958710477924052552893, −4.88359239990992956705299543976, −4.72868000510255781844456117816, −4.66973403249598545827425700627, −4.63604177812513844000713721965, −4.42080721764398605479863312735, −4.41750350100876189168198675584, −3.78788673680624213131392684620, −3.71854616458668008537437990115, −3.67467351083477055177122819194, −3.50180763645388964696767481365, −3.44453225813179184607177230420, −3.44245629685745685875045094732, −3.13932692664993126265403130134, −2.82807773068587826098911251768, −2.59066875326978552986862920174, −2.33702165415097516486525467925, −2.22537825151505059931539706123, −1.94444790600979433188081345551, −1.92201750575789416896751015963, −1.91419219511509351460931145021, −1.31880122532995929599016682212, −1.28165342310341055228676965163, −1.20937597270489172291112748589, −0.910064134066559161033882164644, 0, 0, 0, 0, 0, 0,
0.910064134066559161033882164644, 1.20937597270489172291112748589, 1.28165342310341055228676965163, 1.31880122532995929599016682212, 1.91419219511509351460931145021, 1.92201750575789416896751015963, 1.94444790600979433188081345551, 2.22537825151505059931539706123, 2.33702165415097516486525467925, 2.59066875326978552986862920174, 2.82807773068587826098911251768, 3.13932692664993126265403130134, 3.44245629685745685875045094732, 3.44453225813179184607177230420, 3.50180763645388964696767481365, 3.67467351083477055177122819194, 3.71854616458668008537437990115, 3.78788673680624213131392684620, 4.41750350100876189168198675584, 4.42080721764398605479863312735, 4.63604177812513844000713721965, 4.66973403249598545827425700627, 4.72868000510255781844456117816, 4.88359239990992956705299543976, 5.27290667958710477924052552893
Plot not available for L-functions of degree greater than 10.