Properties

Label 12-1323e6-1.1-c3e6-0-3
Degree 1212
Conductor 5.362×10185.362\times 10^{18}
Sign 11
Analytic cond. 2.26232×10112.26232\times 10^{11}
Root an. cond. 8.835138.83513
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 66

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 52·13-s − 69·16-s − 62·19-s − 398·25-s − 82·31-s − 1.13e3·37-s − 1.56e3·43-s − 416·52-s + 886·61-s + 766·64-s − 2.08e3·67-s − 2.39e3·73-s + 496·76-s + 984·79-s − 682·97-s + 3.18e3·100-s − 3.02e3·103-s − 2.47e3·109-s − 1.94e3·121-s + 656·124-s + 127-s + 131-s + 137-s + 139-s + 9.05e3·148-s + 149-s + ⋯
L(s)  = 1  − 4-s + 1.10·13-s − 1.07·16-s − 0.748·19-s − 3.18·25-s − 0.475·31-s − 5.02·37-s − 5.55·43-s − 1.10·52-s + 1.85·61-s + 1.49·64-s − 3.80·67-s − 3.84·73-s + 0.748·76-s + 1.40·79-s − 0.713·97-s + 3.18·100-s − 2.89·103-s − 2.17·109-s − 1.46·121-s + 0.475·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 5.02·148-s + 0.000549·149-s + ⋯

Functional equation

Λ(s)=((318712)s/2ΓC(s)6L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}
Λ(s)=((318712)s/2ΓC(s+3/2)6L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{18} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1212
Conductor: 3187123^{18} \cdot 7^{12}
Sign: 11
Analytic conductor: 2.26232×10112.26232\times 10^{11}
Root analytic conductor: 8.835138.83513
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 66
Selberg data: (12, 318712, ( :[3/2]6), 1)(12,\ 3^{18} \cdot 7^{12} ,\ ( \ : [3/2]^{6} ),\ 1 )

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
good2 1+p3T2+133T4+425pT6+133p6T8+p15T10+p18T12 1 + p^{3} T^{2} + 133 T^{4} + 425 p T^{6} + 133 p^{6} T^{8} + p^{15} T^{10} + p^{18} T^{12}
5 1+398T2+88267T4+13515052T6+88267p6T8+398p12T10+p18T12 1 + 398 T^{2} + 88267 T^{4} + 13515052 T^{6} + 88267 p^{6} T^{8} + 398 p^{12} T^{10} + p^{18} T^{12}
11 1+1946T2+1291819T4782053340T6+1291819p6T8+1946p12T10+p18T12 1 + 1946 T^{2} + 1291819 T^{4} - 782053340 T^{6} + 1291819 p^{6} T^{8} + 1946 p^{12} T^{10} + p^{18} T^{12}
13 (12pT+20p2T2150062T3+20p5T42p7T5+p9T6)2 ( 1 - 2 p T + 20 p^{2} T^{2} - 150062 T^{3} + 20 p^{5} T^{4} - 2 p^{7} T^{5} + p^{9} T^{6} )^{2}
17 1+19638T2+193457043T4+1185167951260T6+193457043p6T8+19638p12T10+p18T12 1 + 19638 T^{2} + 193457043 T^{4} + 1185167951260 T^{6} + 193457043 p^{6} T^{8} + 19638 p^{12} T^{10} + p^{18} T^{12}
19 (1+31T+11177T2+354214T3+11177p3T4+31p6T5+p9T6)2 ( 1 + 31 T + 11177 T^{2} + 354214 T^{3} + 11177 p^{3} T^{4} + 31 p^{6} T^{5} + p^{9} T^{6} )^{2}
23 1+26874T2+137157615T41070796212084T6+137157615p6T8+26874p12T10+p18T12 1 + 26874 T^{2} + 137157615 T^{4} - 1070796212084 T^{6} + 137157615 p^{6} T^{8} + 26874 p^{12} T^{10} + p^{18} T^{12}
29 1+107486T2+5558833147T4+171068655050380T6+5558833147p6T8+107486p12T10+p18T12 1 + 107486 T^{2} + 5558833147 T^{4} + 171068655050380 T^{6} + 5558833147 p^{6} T^{8} + 107486 p^{12} T^{10} + p^{18} T^{12}
31 (1+41T+55666T2+237883T3+55666p3T4+41p6T5+p9T6)2 ( 1 + 41 T + 55666 T^{2} + 237883 T^{3} + 55666 p^{3} T^{4} + 41 p^{6} T^{5} + p^{9} T^{6} )^{2}
37 (1+566T+246688T2+61584934T3+246688p3T4+566p6T5+p9T6)2 ( 1 + 566 T + 246688 T^{2} + 61584934 T^{3} + 246688 p^{3} T^{4} + 566 p^{6} T^{5} + p^{9} T^{6} )^{2}
41 1+201446T2+24090872899T4+1992163622083516T6+24090872899p6T8+201446p12T10+p18T12 1 + 201446 T^{2} + 24090872899 T^{4} + 1992163622083516 T^{6} + 24090872899 p^{6} T^{8} + 201446 p^{12} T^{10} + p^{18} T^{12}
43 (1+783T+433368T2+140027659T3+433368p3T4+783p6T5+p9T6)2 ( 1 + 783 T + 433368 T^{2} + 140027659 T^{3} + 433368 p^{3} T^{4} + 783 p^{6} T^{5} + p^{9} T^{6} )^{2}
47 1+127818T2+18065263059T4+2679796621113892T6+18065263059p6T8+127818p12T10+p18T12 1 + 127818 T^{2} + 18065263059 T^{4} + 2679796621113892 T^{6} + 18065263059 p^{6} T^{8} + 127818 p^{12} T^{10} + p^{18} T^{12}
53 1+680526T2+219567635127T4+41561598578306884T6+219567635127p6T8+680526p12T10+p18T12 1 + 680526 T^{2} + 219567635127 T^{4} + 41561598578306884 T^{6} + 219567635127 p^{6} T^{8} + 680526 p^{12} T^{10} + p^{18} T^{12}
59 1+252810T2+118459786923T4+17779226383468420T6+118459786923p6T8+252810p12T10+p18T12 1 + 252810 T^{2} + 118459786923 T^{4} + 17779226383468420 T^{6} + 118459786923 p^{6} T^{8} + 252810 p^{12} T^{10} + p^{18} T^{12}
61 (1443T+203324T2+18833347T3+203324p3T4443p6T5+p9T6)2 ( 1 - 443 T + 203324 T^{2} + 18833347 T^{3} + 203324 p^{3} T^{4} - 443 p^{6} T^{5} + p^{9} T^{6} )^{2}
67 (1+1042T+867758T2+445253716T3+867758p3T4+1042p6T5+p9T6)2 ( 1 + 1042 T + 867758 T^{2} + 445253716 T^{3} + 867758 p^{3} T^{4} + 1042 p^{6} T^{5} + p^{9} T^{6} )^{2}
71 1+1054578T2+491902090755T4+2420618974688108pT6+491902090755p6T8+1054578p12T10+p18T12 1 + 1054578 T^{2} + 491902090755 T^{4} + 2420618974688108 p T^{6} + 491902090755 p^{6} T^{8} + 1054578 p^{12} T^{10} + p^{18} T^{12}
73 (1+1199T+1316443T2+794269678T3+1316443p3T4+1199p6T5+p9T6)2 ( 1 + 1199 T + 1316443 T^{2} + 794269678 T^{3} + 1316443 p^{3} T^{4} + 1199 p^{6} T^{5} + p^{9} T^{6} )^{2}
79 (1492T+608946T2546599468T3+608946p3T4492p6T5+p9T6)2 ( 1 - 492 T + 608946 T^{2} - 546599468 T^{3} + 608946 p^{3} T^{4} - 492 p^{6} T^{5} + p^{9} T^{6} )^{2}
83 1834486T2+1207789948167T4565854790583996660T6+1207789948167p6T8834486p12T10+p18T12 1 - 834486 T^{2} + 1207789948167 T^{4} - 565854790583996660 T^{6} + 1207789948167 p^{6} T^{8} - 834486 p^{12} T^{10} + p^{18} T^{12}
89 1+949814T2+691701373123T4+216133792389242716T6+691701373123p6T8+949814p12T10+p18T12 1 + 949814 T^{2} + 691701373123 T^{4} + 216133792389242716 T^{6} + 691701373123 p^{6} T^{8} + 949814 p^{12} T^{10} + p^{18} T^{12}
97 (1+341T+490090T2960147395T3+490090p3T4+341p6T5+p9T6)2 ( 1 + 341 T + 490090 T^{2} - 960147395 T^{3} + 490090 p^{3} T^{4} + 341 p^{6} T^{5} + p^{9} T^{6} )^{2}
show more
show less
   L(s)=p j=112(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−5.26294724029638900132206161947, −4.85451331151224034712813048845, −4.73078665708286700704571438026, −4.65583043705429639970561919243, −4.49871053815137030683181201711, −4.46231177138341515217118411778, −4.25078958207615032378551319388, −3.82758166150088820172536582103, −3.78121247416154817245925447508, −3.76514500587472660682676713347, −3.59123432968280780572248451908, −3.38065834222808802547182986241, −3.36458530371851516773485364460, −3.13131109833473487007797049253, −2.86373177777671029302926768517, −2.59047028250162005532818507251, −2.48602901327919660557542862417, −2.03878263989753877803479575372, −2.01668180266059204247380194139, −1.95461313810555395240566264092, −1.60981621940311158152830876499, −1.52633736250609528190850799819, −1.33146412243848291458767386932, −1.19670716109598163394732490012, −0.900100721732320072677139453255, 0, 0, 0, 0, 0, 0, 0.900100721732320072677139453255, 1.19670716109598163394732490012, 1.33146412243848291458767386932, 1.52633736250609528190850799819, 1.60981621940311158152830876499, 1.95461313810555395240566264092, 2.01668180266059204247380194139, 2.03878263989753877803479575372, 2.48602901327919660557542862417, 2.59047028250162005532818507251, 2.86373177777671029302926768517, 3.13131109833473487007797049253, 3.36458530371851516773485364460, 3.38065834222808802547182986241, 3.59123432968280780572248451908, 3.76514500587472660682676713347, 3.78121247416154817245925447508, 3.82758166150088820172536582103, 4.25078958207615032378551319388, 4.46231177138341515217118411778, 4.49871053815137030683181201711, 4.65583043705429639970561919243, 4.73078665708286700704571438026, 4.85451331151224034712813048845, 5.26294724029638900132206161947

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.