L(s) = 1 | − 15·4-s + 24·5-s + 69·16-s + 42·17-s − 360·20-s + 24·25-s − 312·37-s + 360·41-s + 654·43-s + 1.81e3·47-s − 6·59-s + 141·64-s + 42·67-s − 630·68-s + 1.95e3·79-s + 1.65e3·80-s + 2.89e3·83-s + 1.00e3·85-s + 1.51e3·89-s − 360·100-s − 456·101-s + 2.55e3·109-s − 2.40e3·121-s − 1.23e3·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.87·4-s + 2.14·5-s + 1.07·16-s + 0.599·17-s − 4.02·20-s + 0.191·25-s − 1.38·37-s + 1.37·41-s + 2.31·43-s + 5.62·47-s − 0.0132·59-s + 0.275·64-s + 0.0765·67-s − 1.12·68-s + 2.78·79-s + 2.31·80-s + 3.82·83-s + 1.28·85-s + 1.80·89-s − 0.359·100-s − 0.449·101-s + 2.24·109-s − 1.80·121-s − 0.884·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + ⋯ |
Λ(s)=(=((318⋅712)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((318⋅712)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
20.24341689 |
L(21) |
≈ |
20.24341689 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+15T2+39p2T4+291p2T6+39p8T8+15p12T10+p18T12 |
| 5 | (1−12T+204T2−654pT3+204p3T4−12p6T5+p9T6)2 |
| 11 | 1+2406T2+2486343T4+1930638516T6+2486343p6T8+2406p12T10+p18T12 |
| 13 | 1+4677T2+15059643T4+218103758p2T6+15059643p6T8+4677p12T10+p18T12 |
| 17 | (1−21T+9654T2−298065T3+9654p3T4−21p6T5+p9T6)2 |
| 19 | 1+10698T2+33088839T4−140201322100T6+33088839p6T8+10698p12T10+p18T12 |
| 23 | 1+50265T2+1230954627T4+18571227575238T6+1230954627p6T8+50265p12T10+p18T12 |
| 29 | 1+3537pT2+5093278491T4+155279545452270T6+5093278491p6T8+3537p13T10+p18T12 |
| 31 | 1+113865T2+6700832043T4+247428066014534T6+6700832043p6T8+113865p12T10+p18T12 |
| 37 | (1+156T+147900T2+15097686T3+147900p3T4+156p6T5+p9T6)2 |
| 41 | (1−180T+149496T2−14321250T3+149496p3T4−180p6T5+p9T6)2 |
| 43 | (1−327T+196824T2−36989763T3+196824p3T4−327p6T5+p9T6)2 |
| 47 | (1−906T+390030T2−124576836T3+390030p3T4−906p6T5+p9T6)2 |
| 53 | 1+180597T2+71733427059T4+7770811583749470T6+71733427059p6T8+180597p12T10+p18T12 |
| 59 | (1+3T+324096T2−59668521T3+324096p3T4+3p6T5+p9T6)2 |
| 61 | 1+782898T2+282242036535T4+70824652394396060T6+282242036535p6T8+782898p12T10+p18T12 |
| 67 | (1−21T+805641T2−16881406T3+805641p3T4−21p6T5+p9T6)2 |
| 71 | 1+718233T2+448945913091T4+180928540927620678T6+448945913091p6T8+718233p12T10+p18T12 |
| 73 | 1+859254T2+509280578079T4+226900074133018100T6+509280578079p6T8+859254p12T10+p18T12 |
| 79 | (1−978T+1121190T2−639733376T3+1121190p3T4−978p6T5+p9T6)2 |
| 83 | (1−1446T+1946202T2−1587114996T3+1946202p3T4−1446p6T5+p9T6)2 |
| 89 | (1−759T+1423131T2−991050762T3+1423131p3T4−759p6T5+p9T6)2 |
| 97 | 1+1875102T2+3279229040895T4+3114657711972625988T6+3279229040895p6T8+1875102p12T10+p18T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.71507928590176734735820650100, −4.35156331695660781084203995269, −4.32014485989271344474754956229, −4.21549869388628126670839612783, −4.00826063272024448316888000141, −3.94379316290337485469800444152, −3.89467604790867467242664013459, −3.52187322706236384613979336704, −3.33271733968894316057613519684, −3.27000335820518476310392028177, −3.10119958152249523559508703292, −2.62021621516129182697966224903, −2.52558297724396924021314255477, −2.40852046420157380343612050502, −2.22156312906962778224823103860, −2.19222594412830502245172157774, −1.92052261892594533998291353029, −1.70093403959821990369821741301, −1.59237771399940184716505464579, −1.07010449121753004343972994882, −1.03140266686704113044661630908, −0.68760119111977909916692903770, −0.62227424419970931131937199954, −0.47409032684847244214625537038, −0.37095865391295669053099305598,
0.37095865391295669053099305598, 0.47409032684847244214625537038, 0.62227424419970931131937199954, 0.68760119111977909916692903770, 1.03140266686704113044661630908, 1.07010449121753004343972994882, 1.59237771399940184716505464579, 1.70093403959821990369821741301, 1.92052261892594533998291353029, 2.19222594412830502245172157774, 2.22156312906962778224823103860, 2.40852046420157380343612050502, 2.52558297724396924021314255477, 2.62021621516129182697966224903, 3.10119958152249523559508703292, 3.27000335820518476310392028177, 3.33271733968894316057613519684, 3.52187322706236384613979336704, 3.89467604790867467242664013459, 3.94379316290337485469800444152, 4.00826063272024448316888000141, 4.21549869388628126670839612783, 4.32014485989271344474754956229, 4.35156331695660781084203995269, 4.71507928590176734735820650100
Plot not available for L-functions of degree greater than 10.