Properties

Label 12-112e6-1.1-c2e6-0-1
Degree $12$
Conductor $1.974\times 10^{12}$
Sign $1$
Analytic cond. $807.827$
Root an. cond. $1.74693$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 14·7-s − 2·9-s − 33·11-s + 28·13-s − 3·15-s − 5·17-s + 63·19-s + 42·21-s − 33·23-s + 22·25-s − 15·27-s − 100·29-s − 69·31-s − 99·33-s − 14·35-s + 15·37-s + 84·39-s + 124·41-s + 2·45-s + 171·47-s + 37·49-s − 15·51-s − 97·53-s + 33·55-s + 189·57-s + ⋯
L(s)  = 1  + 3-s − 1/5·5-s + 2·7-s − 2/9·9-s − 3·11-s + 2.15·13-s − 1/5·15-s − 0.294·17-s + 3.31·19-s + 2·21-s − 1.43·23-s + 0.879·25-s − 5/9·27-s − 3.44·29-s − 2.22·31-s − 3·33-s − 2/5·35-s + 0.405·37-s + 2.15·39-s + 3.02·41-s + 2/45·45-s + 3.63·47-s + 0.755·49-s − 0.294·51-s − 1.83·53-s + 3/5·55-s + 3.31·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{24} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(807.827\)
Root analytic conductor: \(1.74693\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{24} \cdot 7^{6} ,\ ( \ : [1]^{6} ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.369625317\)
\(L(\frac12)\) \(\approx\) \(3.369625317\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 2 p T + 159 T^{2} - 172 p T^{3} + 159 p^{2} T^{4} - 2 p^{5} T^{5} + p^{6} T^{6} \)
good3 \( 1 - p T + 11 T^{2} - 8 p T^{3} + 73 T^{4} - 5 p^{4} T^{5} + 118 p^{2} T^{6} - 5 p^{6} T^{7} + 73 p^{4} T^{8} - 8 p^{7} T^{9} + 11 p^{8} T^{10} - p^{11} T^{11} + p^{12} T^{12} \)
5 \( 1 + T - 21 T^{2} - 84 T^{3} - 119 T^{4} + 691 T^{5} + 21334 T^{6} + 691 p^{2} T^{7} - 119 p^{4} T^{8} - 84 p^{6} T^{9} - 21 p^{8} T^{10} + p^{10} T^{11} + p^{12} T^{12} \)
11 \( 1 + 3 p T + 647 T^{2} + 852 p T^{3} + 99785 T^{4} + 897939 T^{5} + 8784494 T^{6} + 897939 p^{2} T^{7} + 99785 p^{4} T^{8} + 852 p^{7} T^{9} + 647 p^{8} T^{10} + 3 p^{11} T^{11} + p^{12} T^{12} \)
13 \( ( 1 - 14 T + 239 T^{2} - 308 p T^{3} + 239 p^{2} T^{4} - 14 p^{4} T^{5} + p^{6} T^{6} )^{2} \)
17 \( 1 + 5 T - 597 T^{2} - 4140 T^{3} + 189001 T^{4} + 874775 T^{5} - 52481738 T^{6} + 874775 p^{2} T^{7} + 189001 p^{4} T^{8} - 4140 p^{6} T^{9} - 597 p^{8} T^{10} + 5 p^{10} T^{11} + p^{12} T^{12} \)
19 \( 1 - 63 T + 2687 T^{2} - 85932 T^{3} + 2344025 T^{4} - 55178949 T^{5} + 1125045854 T^{6} - 55178949 p^{2} T^{7} + 2344025 p^{4} T^{8} - 85932 p^{6} T^{9} + 2687 p^{8} T^{10} - 63 p^{10} T^{11} + p^{12} T^{12} \)
23 \( 1 + 33 T + 1091 T^{2} + 24024 T^{3} + 239153 T^{4} - 2995065 T^{5} - 92805178 T^{6} - 2995065 p^{2} T^{7} + 239153 p^{4} T^{8} + 24024 p^{6} T^{9} + 1091 p^{8} T^{10} + 33 p^{10} T^{11} + p^{12} T^{12} \)
29 \( ( 1 + 50 T + 107 p T^{2} + 85660 T^{3} + 107 p^{3} T^{4} + 50 p^{4} T^{5} + p^{6} T^{6} )^{2} \)
31 \( 1 + 69 T + 4719 T^{2} + 216108 T^{3} + 9775473 T^{4} + 341517135 T^{5} + 11766553198 T^{6} + 341517135 p^{2} T^{7} + 9775473 p^{4} T^{8} + 216108 p^{6} T^{9} + 4719 p^{8} T^{10} + 69 p^{10} T^{11} + p^{12} T^{12} \)
37 \( 1 - 15 T - 1557 T^{2} - 33940 T^{3} + 790041 T^{4} + 51498435 T^{5} + 375470262 T^{6} + 51498435 p^{2} T^{7} + 790041 p^{4} T^{8} - 33940 p^{6} T^{9} - 1557 p^{8} T^{10} - 15 p^{10} T^{11} + p^{12} T^{12} \)
41 \( ( 1 - 62 T + 4951 T^{2} - 208228 T^{3} + 4951 p^{2} T^{4} - 62 p^{4} T^{5} + p^{6} T^{6} )^{2} \)
43 \( 1 - 3670 T^{2} + 12561503 T^{4} - 23327513140 T^{6} + 12561503 p^{4} T^{8} - 3670 p^{8} T^{10} + p^{12} T^{12} \)
47 \( 1 - 171 T + 17823 T^{2} - 1380996 T^{3} + 90217905 T^{4} - 5234761233 T^{5} + 263209480846 T^{6} - 5234761233 p^{2} T^{7} + 90217905 p^{4} T^{8} - 1380996 p^{6} T^{9} + 17823 p^{8} T^{10} - 171 p^{10} T^{11} + p^{12} T^{12} \)
53 \( 1 + 97 T + 1179 T^{2} - 23940 T^{3} + 4735705 T^{4} - 335970173 T^{5} - 51150763946 T^{6} - 335970173 p^{2} T^{7} + 4735705 p^{4} T^{8} - 23940 p^{6} T^{9} + 1179 p^{8} T^{10} + 97 p^{10} T^{11} + p^{12} T^{12} \)
59 \( 1 - 27 T + 5867 T^{2} - 151848 T^{3} + 13078745 T^{4} - 314287821 T^{5} + 27132604934 T^{6} - 314287821 p^{2} T^{7} + 13078745 p^{4} T^{8} - 151848 p^{6} T^{9} + 5867 p^{8} T^{10} - 27 p^{10} T^{11} + p^{12} T^{12} \)
61 \( 1 + 89 T - 3749 T^{2} - 138740 T^{3} + 40371865 T^{4} + 372749339 T^{5} - 166841025514 T^{6} + 372749339 p^{2} T^{7} + 40371865 p^{4} T^{8} - 138740 p^{6} T^{9} - 3749 p^{8} T^{10} + 89 p^{10} T^{11} + p^{12} T^{12} \)
67 \( 1 + 309 T + 53283 T^{2} + 6629904 T^{3} + 664897785 T^{4} + 56444370027 T^{5} + 4088196283606 T^{6} + 56444370027 p^{2} T^{7} + 664897785 p^{4} T^{8} + 6629904 p^{6} T^{9} + 53283 p^{8} T^{10} + 309 p^{10} T^{11} + p^{12} T^{12} \)
71 \( 1 - 12262 T^{2} + 65975471 T^{4} - 264226747348 T^{6} + 65975471 p^{4} T^{8} - 12262 p^{8} T^{10} + p^{12} T^{12} \)
73 \( 1 - 123 T - 2541 T^{2} + 161020 T^{3} + 74498025 T^{4} - 953468913 T^{5} - 428445487386 T^{6} - 953468913 p^{2} T^{7} + 74498025 p^{4} T^{8} + 161020 p^{6} T^{9} - 2541 p^{8} T^{10} - 123 p^{10} T^{11} + p^{12} T^{12} \)
79 \( 1 + 201 T + 34179 T^{2} + 4163112 T^{3} + 467823873 T^{4} + 44136675375 T^{5} + 3764890310758 T^{6} + 44136675375 p^{2} T^{7} + 467823873 p^{4} T^{8} + 4163112 p^{6} T^{9} + 34179 p^{8} T^{10} + 201 p^{10} T^{11} + p^{12} T^{12} \)
83 \( 1 - 24694 T^{2} + 317726975 T^{4} - 2615092039540 T^{6} + 317726975 p^{4} T^{8} - 24694 p^{8} T^{10} + p^{12} T^{12} \)
89 \( 1 - 91 T - 8109 T^{2} + 1152060 T^{3} + 18525385 T^{4} - 3745251601 T^{5} + 93648370726 T^{6} - 3745251601 p^{2} T^{7} + 18525385 p^{4} T^{8} + 1152060 p^{6} T^{9} - 8109 p^{8} T^{10} - 91 p^{10} T^{11} + p^{12} T^{12} \)
97 \( ( 1 - 62 T + 17975 T^{2} - 1362020 T^{3} + 17975 p^{2} T^{4} - 62 p^{4} T^{5} + p^{6} T^{6} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57455195786164339841507527283, −7.52146307434365221749030241139, −7.28259512102583409655079770619, −7.10303831273750381029352290831, −6.50795807778883642094099498097, −6.07831321437548390360598137325, −5.90013962078543132379511680334, −5.85077130772826564192465668486, −5.74711746346751441425582878341, −5.45928648422606504367693176980, −5.13709635094292113261776935765, −5.03216062348860277729174690267, −4.94205885273392263948760755102, −4.26414670534588958799845514680, −4.21326002154154364060839411252, −3.85028868833435709603061669761, −3.77497599267691515283010776858, −3.15779391832884547799785363832, −3.06164394083853148528957710539, −2.83330522036510359245155646602, −2.47110605305406459348682624295, −2.01805472905708573708709424587, −1.55376146737051692488260398981, −1.45317394699426049714300474576, −0.48738742295057291694454308674, 0.48738742295057291694454308674, 1.45317394699426049714300474576, 1.55376146737051692488260398981, 2.01805472905708573708709424587, 2.47110605305406459348682624295, 2.83330522036510359245155646602, 3.06164394083853148528957710539, 3.15779391832884547799785363832, 3.77497599267691515283010776858, 3.85028868833435709603061669761, 4.21326002154154364060839411252, 4.26414670534588958799845514680, 4.94205885273392263948760755102, 5.03216062348860277729174690267, 5.13709635094292113261776935765, 5.45928648422606504367693176980, 5.74711746346751441425582878341, 5.85077130772826564192465668486, 5.90013962078543132379511680334, 6.07831321437548390360598137325, 6.50795807778883642094099498097, 7.10303831273750381029352290831, 7.28259512102583409655079770619, 7.52146307434365221749030241139, 7.57455195786164339841507527283

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.