L(s) = 1 | + 5·5-s + 4·7-s + 4·11-s + 2·13-s + 2·17-s + 6·19-s + 5·23-s + 15·25-s + 2·29-s + 8·31-s + 20·35-s + 8·37-s + 2·41-s + 18·43-s − 4·47-s − 3·49-s − 2·53-s + 20·55-s + 6·59-s + 10·61-s + 10·65-s + 16·67-s + 10·71-s + 18·73-s + 16·77-s + 14·79-s + 8·83-s + ⋯ |
L(s) = 1 | + 2.23·5-s + 1.51·7-s + 1.20·11-s + 0.554·13-s + 0.485·17-s + 1.37·19-s + 1.04·23-s + 3·25-s + 0.371·29-s + 1.43·31-s + 3.38·35-s + 1.31·37-s + 0.312·41-s + 2.74·43-s − 0.583·47-s − 3/7·49-s − 0.274·53-s + 2.69·55-s + 0.781·59-s + 1.28·61-s + 1.24·65-s + 1.95·67-s + 1.18·71-s + 2.10·73-s + 1.82·77-s + 1.57·79-s + 0.878·83-s + ⋯ |
Λ(s)=(=((210⋅310⋅55⋅235)s/2ΓC(s)5L(s)Λ(2−s)
Λ(s)=(=((210⋅310⋅55⋅235)s/2ΓC(s+1/2)5L(s)Λ(1−s)
Degree: |
10 |
Conductor: |
210⋅310⋅55⋅235
|
Sign: |
1
|
Analytic conductor: |
3.94809×107 |
Root analytic conductor: |
5.74961 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(10, 210⋅310⋅55⋅235, ( :1/2,1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
55.92035220 |
L(21) |
≈ |
55.92035220 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)5 |
| 23 | C1 | (1−T)5 |
good | 7 | C2≀S5 | 1−4T+19T2−66T3+177T4−530T5+177pT6−66p2T7+19p3T8−4p4T9+p5T10 |
| 11 | C2≀S5 | 1−4T+29T2−68T3+436T4−960T5+436pT6−68p2T7+29p3T8−4p4T9+p5T10 |
| 13 | C2≀S5 | 1−2T+15T2−16T3+112T4+188T5+112pT6−16p2T7+15p3T8−2p4T9+p5T10 |
| 17 | C2≀S5 | 1−2T+41T2+20T3+45pT4+1170T5+45p2T6+20p2T7+41p3T8−2p4T9+p5T10 |
| 19 | C2≀S5 | 1−6T+77T2−392T3+2740T4−10492T5+2740pT6−392p2T7+77p3T8−6p4T9+p5T10 |
| 29 | C2≀S5 | 1−2T+107T2−118T3+5157T4−3732T5+5157pT6−118p2T7+107p3T8−2p4T9+p5T10 |
| 31 | C2≀S5 | 1−8T+73T2−344T3+1969T4−6064T5+1969pT6−344p2T7+73p3T8−8p4T9+p5T10 |
| 37 | C2≀S5 | 1−8T+145T2−686T3+8113T4−28738T5+8113pT6−686p2T7+145p3T8−8p4T9+p5T10 |
| 41 | C2≀S5 | 1−2T+15T2−282T3+2285T4+1648T5+2285pT6−282p2T7+15p3T8−2p4T9+p5T10 |
| 43 | C2≀S5 | 1−18T+203T2−2144T3+17950T4−121564T5+17950pT6−2144p2T7+203p3T8−18p4T9+p5T10 |
| 47 | C2≀S5 | 1+4T+65T2+620T3+3124T4+33264T5+3124pT6+620p2T7+65p3T8+4p4T9+p5T10 |
| 53 | C2≀S5 | 1+2T+93T2−188T3+4765T4−24738T5+4765pT6−188p2T7+93p3T8+2p4T9+p5T10 |
| 59 | C2≀S5 | 1−6T+161T2−738T3+15065T4−64116T5+15065pT6−738p2T7+161p3T8−6p4T9+p5T10 |
| 61 | C2≀S5 | 1−10T+167T2−1432T3+14400T4−99908T5+14400pT6−1432p2T7+167p3T8−10p4T9+p5T10 |
| 67 | C2≀S5 | 1−16T+287T2−2078T3+21265T4−107186T5+21265pT6−2078p2T7+287p3T8−16p4T9+p5T10 |
| 71 | C2≀S5 | 1−10T+237T2−2202T3+29657T4−212680T5+29657pT6−2202p2T7+237p3T8−10p4T9+p5T10 |
| 73 | C2≀S5 | 1−18T+443T2−5192T3+69816T4−566324T5+69816pT6−5192p2T7+443p3T8−18p4T9+p5T10 |
| 79 | C2≀S5 | 1−14T+219T2−2728T3+29146T4−260884T5+29146pT6−2728p2T7+219p3T8−14p4T9+p5T10 |
| 83 | C2≀S5 | 1−8T+pT2−1108T3+14061T4−107580T5+14061pT6−1108p2T7+p4T8−8p4T9+p5T10 |
| 89 | C2≀S5 | 1+18T+485T2+5928T3+88354T4+768876T5+88354pT6+5928p2T7+485p3T8+18p4T9+p5T10 |
| 97 | C2≀S5 | 1−6T+297T2−3056T3+39046T4−479988T5+39046pT6−3056p2T7+297p3T8−6p4T9+p5T10 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.90361575746663998989685793178, −4.78535092781026978522172288015, −4.70899864484118438677909233458, −4.64484905541205043103253117664, −4.58658192230373695524631545996, −4.07000330528055237724083539442, −3.87061606167528162462517371709, −3.76673764769669862155933461542, −3.75401153155864613992329865068, −3.75041019627346759919978199615, −3.08200078225406413264561959210, −2.94340654299619777424573183212, −2.93468719703186432104853487762, −2.77086373348407089923421084432, −2.70724901188590614156795148511, −2.18577620187739833051955038335, −2.06620689135795090059865489172, −1.87841174631998414917874934252, −1.81439403720821503003579893097, −1.76655044520155341346497847415, −1.10546118893969112856178848140, −1.00936089847603733380098820065, −0.968539965046280998779571369819, −0.73145949031201432934140032293, −0.71010563717108415910656754494,
0.71010563717108415910656754494, 0.73145949031201432934140032293, 0.968539965046280998779571369819, 1.00936089847603733380098820065, 1.10546118893969112856178848140, 1.76655044520155341346497847415, 1.81439403720821503003579893097, 1.87841174631998414917874934252, 2.06620689135795090059865489172, 2.18577620187739833051955038335, 2.70724901188590614156795148511, 2.77086373348407089923421084432, 2.93468719703186432104853487762, 2.94340654299619777424573183212, 3.08200078225406413264561959210, 3.75041019627346759919978199615, 3.75401153155864613992329865068, 3.76673764769669862155933461542, 3.87061606167528162462517371709, 4.07000330528055237724083539442, 4.58658192230373695524631545996, 4.64484905541205043103253117664, 4.70899864484118438677909233458, 4.78535092781026978522172288015, 4.90361575746663998989685793178