Properties

Label 10-1984e5-1.1-c3e5-0-2
Degree $10$
Conductor $3.074\times 10^{16}$
Sign $1$
Analytic cond. $2.19805\times 10^{10}$
Root an. cond. $10.8194$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 15·5-s − 9·7-s − 45·9-s + 88·11-s + 28·13-s − 60·15-s + 138·17-s − 43·19-s − 36·21-s − 206·23-s + 33·25-s − 180·27-s − 474·29-s + 155·31-s + 352·33-s + 135·35-s + 508·37-s + 112·39-s + 473·41-s − 82·43-s + 675·45-s + 644·47-s − 1.20e3·49-s + 552·51-s − 374·53-s − 1.32e3·55-s + ⋯
L(s)  = 1  + 0.769·3-s − 1.34·5-s − 0.485·7-s − 5/3·9-s + 2.41·11-s + 0.597·13-s − 1.03·15-s + 1.96·17-s − 0.519·19-s − 0.374·21-s − 1.86·23-s + 0.263·25-s − 1.28·27-s − 3.03·29-s + 0.898·31-s + 1.85·33-s + 0.651·35-s + 2.25·37-s + 0.459·39-s + 1.80·41-s − 0.290·43-s + 2.23·45-s + 1.99·47-s − 3.51·49-s + 1.51·51-s − 0.969·53-s − 3.23·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 31^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 31^{5}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{30} \cdot 31^{5}\)
Sign: $1$
Analytic conductor: \(2.19805\times 10^{10}\)
Root analytic conductor: \(10.8194\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{30} \cdot 31^{5} ,\ ( \ : 3/2, 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(4.500489163\)
\(L(\frac12)\) \(\approx\) \(4.500489163\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
31$C_1$ \( ( 1 - p T )^{5} \)
good3$C_2 \wr S_5$ \( 1 - 4 T + 61 T^{2} - 244 T^{3} + 2152 T^{4} - 7312 T^{5} + 2152 p^{3} T^{6} - 244 p^{6} T^{7} + 61 p^{9} T^{8} - 4 p^{12} T^{9} + p^{15} T^{10} \)
5$C_2 \wr S_5$ \( 1 + 3 p T + 192 T^{2} + 9 p^{3} T^{3} + 1159 p^{2} T^{4} + 333016 T^{5} + 1159 p^{5} T^{6} + 9 p^{9} T^{7} + 192 p^{9} T^{8} + 3 p^{13} T^{9} + p^{15} T^{10} \)
7$C_2 \wr S_5$ \( 1 + 9 T + 1286 T^{2} + 13219 T^{3} + 749569 T^{4} + 140884 p^{2} T^{5} + 749569 p^{3} T^{6} + 13219 p^{6} T^{7} + 1286 p^{9} T^{8} + 9 p^{12} T^{9} + p^{15} T^{10} \)
11$C_2 \wr S_5$ \( 1 - 8 p T + 6093 T^{2} - 292388 T^{3} + 1301104 p T^{4} - 543335768 T^{5} + 1301104 p^{4} T^{6} - 292388 p^{6} T^{7} + 6093 p^{9} T^{8} - 8 p^{13} T^{9} + p^{15} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 28 T + 7135 T^{2} - 146228 T^{3} + 26256108 T^{4} - 35243088 p T^{5} + 26256108 p^{3} T^{6} - 146228 p^{6} T^{7} + 7135 p^{9} T^{8} - 28 p^{12} T^{9} + p^{15} T^{10} \)
17$C_2 \wr S_5$ \( 1 - 138 T + 18821 T^{2} - 1295296 T^{3} + 94306730 T^{4} - 5219815724 T^{5} + 94306730 p^{3} T^{6} - 1295296 p^{6} T^{7} + 18821 p^{9} T^{8} - 138 p^{12} T^{9} + p^{15} T^{10} \)
19$C_2 \wr S_5$ \( 1 + 43 T + 14282 T^{2} + 665949 T^{3} + 143484405 T^{4} + 4204242792 T^{5} + 143484405 p^{3} T^{6} + 665949 p^{6} T^{7} + 14282 p^{9} T^{8} + 43 p^{12} T^{9} + p^{15} T^{10} \)
23$C_2 \wr S_5$ \( 1 + 206 T + 56567 T^{2} + 8412616 T^{3} + 1355836878 T^{4} + 145199336980 T^{5} + 1355836878 p^{3} T^{6} + 8412616 p^{6} T^{7} + 56567 p^{9} T^{8} + 206 p^{12} T^{9} + p^{15} T^{10} \)
29$C_2 \wr S_5$ \( 1 + 474 T + 6627 p T^{2} + 49061232 T^{3} + 10980338860 T^{4} + 1822723457692 T^{5} + 10980338860 p^{3} T^{6} + 49061232 p^{6} T^{7} + 6627 p^{10} T^{8} + 474 p^{12} T^{9} + p^{15} T^{10} \)
37$C_2 \wr S_5$ \( 1 - 508 T + 227615 T^{2} - 57860804 T^{3} + 14749365044 T^{4} - 2939687873248 T^{5} + 14749365044 p^{3} T^{6} - 57860804 p^{6} T^{7} + 227615 p^{9} T^{8} - 508 p^{12} T^{9} + p^{15} T^{10} \)
41$C_2 \wr S_5$ \( 1 - 473 T + 212468 T^{2} - 41989871 T^{3} + 9890438467 T^{4} - 1275176752708 T^{5} + 9890438467 p^{3} T^{6} - 41989871 p^{6} T^{7} + 212468 p^{9} T^{8} - 473 p^{12} T^{9} + p^{15} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 82 T + 165165 T^{2} + 5368512 T^{3} + 12472915960 T^{4} - 337211943764 T^{5} + 12472915960 p^{3} T^{6} + 5368512 p^{6} T^{7} + 165165 p^{9} T^{8} + 82 p^{12} T^{9} + p^{15} T^{10} \)
47$C_2 \wr S_5$ \( 1 - 644 T + 554351 T^{2} - 234714672 T^{3} + 115562907166 T^{4} - 35051341744792 T^{5} + 115562907166 p^{3} T^{6} - 234714672 p^{6} T^{7} + 554351 p^{9} T^{8} - 644 p^{12} T^{9} + p^{15} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 374 T + 576247 T^{2} + 171145064 T^{3} + 150851653524 T^{4} + 34300778925636 T^{5} + 150851653524 p^{3} T^{6} + 171145064 p^{6} T^{7} + 576247 p^{9} T^{8} + 374 p^{12} T^{9} + p^{15} T^{10} \)
59$C_2 \wr S_5$ \( 1 + 541 T + 537358 T^{2} + 191350819 T^{3} + 155953866493 T^{4} + 52764035054576 T^{5} + 155953866493 p^{3} T^{6} + 191350819 p^{6} T^{7} + 537358 p^{9} T^{8} + 541 p^{12} T^{9} + p^{15} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 440 T + 812231 T^{2} + 418781748 T^{3} + 304016280244 T^{4} + 143850142707544 T^{5} + 304016280244 p^{3} T^{6} + 418781748 p^{6} T^{7} + 812231 p^{9} T^{8} + 440 p^{12} T^{9} + p^{15} T^{10} \)
67$C_2 \wr S_5$ \( 1 + 1884 T + 2450759 T^{2} + 2201201360 T^{3} + 1621026987130 T^{4} + 960970659633640 T^{5} + 1621026987130 p^{3} T^{6} + 2201201360 p^{6} T^{7} + 2450759 p^{9} T^{8} + 1884 p^{12} T^{9} + p^{15} T^{10} \)
71$C_2 \wr S_5$ \( 1 + 491 T + 706006 T^{2} + 236784773 T^{3} + 359554033753 T^{4} + 113275200244720 T^{5} + 359554033753 p^{3} T^{6} + 236784773 p^{6} T^{7} + 706006 p^{9} T^{8} + 491 p^{12} T^{9} + p^{15} T^{10} \)
73$C_2 \wr S_5$ \( 1 - 302 T + 1314181 T^{2} - 207853288 T^{3} + 759777340178 T^{4} - 72163696656404 T^{5} + 759777340178 p^{3} T^{6} - 207853288 p^{6} T^{7} + 1314181 p^{9} T^{8} - 302 p^{12} T^{9} + p^{15} T^{10} \)
79$C_2 \wr S_5$ \( 1 - 1244 T + 1687051 T^{2} - 1490045944 T^{3} + 1216531979082 T^{4} - 864439949459736 T^{5} + 1216531979082 p^{3} T^{6} - 1490045944 p^{6} T^{7} + 1687051 p^{9} T^{8} - 1244 p^{12} T^{9} + p^{15} T^{10} \)
83$C_2 \wr S_5$ \( 1 - 1544 T + 3380093 T^{2} - 3348635692 T^{3} + 4068922665592 T^{4} - 2819163408281032 T^{5} + 4068922665592 p^{3} T^{6} - 3348635692 p^{6} T^{7} + 3380093 p^{9} T^{8} - 1544 p^{12} T^{9} + p^{15} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 3056 T + 5726001 T^{2} - 7828553800 T^{3} + 8622708642742 T^{4} - 7932135103145232 T^{5} + 8622708642742 p^{3} T^{6} - 7828553800 p^{6} T^{7} + 5726001 p^{9} T^{8} - 3056 p^{12} T^{9} + p^{15} T^{10} \)
97$C_2 \wr S_5$ \( 1 - 583 T + 2057756 T^{2} - 1128095649 T^{3} + 2572316040187 T^{4} - 1119067796809228 T^{5} + 2572316040187 p^{3} T^{6} - 1128095649 p^{6} T^{7} + 2057756 p^{9} T^{8} - 583 p^{12} T^{9} + p^{15} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.10417077488699695006407656462, −5.04408653952301911203929560567, −4.56576990582468044062036390659, −4.37139901901414708046941489971, −4.33312730927553274778786501246, −4.26505057529841654531220096168, −3.83751345461095874951469119818, −3.79965702161665035068920501118, −3.68905441329190211290716050561, −3.65225333379815435102993033760, −3.13349848880510656780380176403, −3.09288090192620501762260408097, −3.07984928441884741171287304299, −2.81156415026390120887982382691, −2.74666282101261313248164231375, −2.11629129228776634296294584861, −1.96773001740720075086528472322, −1.91701331423542917568282027835, −1.73553770286563179412125106247, −1.33537168314417583528839679148, −1.20084938683055141527818224872, −0.818500250267454319857864354858, −0.54189855274051712082707448399, −0.44661315170518024715416358826, −0.21273203605796845810634381908, 0.21273203605796845810634381908, 0.44661315170518024715416358826, 0.54189855274051712082707448399, 0.818500250267454319857864354858, 1.20084938683055141527818224872, 1.33537168314417583528839679148, 1.73553770286563179412125106247, 1.91701331423542917568282027835, 1.96773001740720075086528472322, 2.11629129228776634296294584861, 2.74666282101261313248164231375, 2.81156415026390120887982382691, 3.07984928441884741171287304299, 3.09288090192620501762260408097, 3.13349848880510656780380176403, 3.65225333379815435102993033760, 3.68905441329190211290716050561, 3.79965702161665035068920501118, 3.83751345461095874951469119818, 4.26505057529841654531220096168, 4.33312730927553274778786501246, 4.37139901901414708046941489971, 4.56576990582468044062036390659, 5.04408653952301911203929560567, 5.10417077488699695006407656462

Graph of the $Z$-function along the critical line