| L(s) = 1 | + (−0.786 − 0.618i)5-s + (−0.580 + 0.814i)7-s + (−0.723 − 0.690i)11-s + (0.580 + 0.814i)13-s + (0.841 − 0.540i)17-s + (−0.841 − 0.540i)19-s + (0.235 + 0.971i)25-s + (−0.888 − 0.458i)29-s + (−0.981 + 0.189i)31-s + (0.959 − 0.281i)35-s + (−0.142 − 0.989i)37-s + (−0.786 − 0.618i)41-s + (−0.981 − 0.189i)43-s + (0.5 + 0.866i)47-s + (−0.327 − 0.945i)49-s + ⋯ |
| L(s) = 1 | + (−0.786 − 0.618i)5-s + (−0.580 + 0.814i)7-s + (−0.723 − 0.690i)11-s + (0.580 + 0.814i)13-s + (0.841 − 0.540i)17-s + (−0.841 − 0.540i)19-s + (0.235 + 0.971i)25-s + (−0.888 − 0.458i)29-s + (−0.981 + 0.189i)31-s + (0.959 − 0.281i)35-s + (−0.142 − 0.989i)37-s + (−0.786 − 0.618i)41-s + (−0.981 − 0.189i)43-s + (0.5 + 0.866i)47-s + (−0.327 − 0.945i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9482476002 + 0.1852408342i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9482476002 + 0.1852408342i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7691783097 + 0.02653924077i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7691783097 + 0.02653924077i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (-0.786 - 0.618i)T \) |
| 7 | \( 1 + (-0.580 + 0.814i)T \) |
| 11 | \( 1 + (-0.723 - 0.690i)T \) |
| 13 | \( 1 + (0.580 + 0.814i)T \) |
| 17 | \( 1 + (0.841 - 0.540i)T \) |
| 19 | \( 1 + (-0.841 - 0.540i)T \) |
| 29 | \( 1 + (-0.888 - 0.458i)T \) |
| 31 | \( 1 + (-0.981 + 0.189i)T \) |
| 37 | \( 1 + (-0.142 - 0.989i)T \) |
| 41 | \( 1 + (-0.786 - 0.618i)T \) |
| 43 | \( 1 + (-0.981 - 0.189i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.415 + 0.909i)T \) |
| 59 | \( 1 + (-0.580 - 0.814i)T \) |
| 61 | \( 1 + (-0.327 + 0.945i)T \) |
| 67 | \( 1 + (-0.723 + 0.690i)T \) |
| 71 | \( 1 + (0.959 + 0.281i)T \) |
| 73 | \( 1 + (0.841 + 0.540i)T \) |
| 79 | \( 1 + (0.995 - 0.0950i)T \) |
| 83 | \( 1 + (0.786 - 0.618i)T \) |
| 89 | \( 1 + (-0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.928 - 0.371i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.11320065749533974070373492577, −20.98256010439089326707875027124, −20.225105317187547748732723495991, −19.63314969954109483417972074911, −18.62057941600361586236858323556, −18.19569252878793235765267390420, −16.9059470121026529321908350154, −16.40775823243060356121491944171, −15.173698260598114595477323732173, −15.017584093496808655034469719975, −13.753560213259410480621702626959, −12.9000559108045827873300931204, −12.2749270994611694303392979569, −11.046276839235513567951241663807, −10.44979019786092469245601645095, −9.834960946431753298302560339506, −8.36003466107916073331426253552, −7.730725653138908533698060243869, −6.94064294741030108709075322298, −6.026253577233707471538411708088, −4.85142090789095513783736191377, −3.66367181814218341597381827471, −3.28300468689906456467243500251, −1.82738797177626585919969037536, −0.383611296021801691320563210286,
0.558361285290231987329392539010, 1.996286158888477659248434683022, 3.17056800028953856557362721717, 3.98632148553784381989531105055, 5.159246418133203795711206386286, 5.86599677959350766452240593467, 6.997313597718095215288499487855, 7.9640017973839502726233419915, 8.841350964465030538939406527697, 9.33046732252010115698387396660, 10.67192399987049029153393994814, 11.45902323866669810614704229561, 12.25338759866461652141377217933, 12.97494467630186812606773799169, 13.787211158500322546896749820475, 14.96058676616062185937390133307, 15.699976594560624919196020718006, 16.31738065197971576256900193076, 16.92617986878403171503425848253, 18.35110043793847186014569667474, 18.84875319916017551784947470289, 19.468481870240124125121642492845, 20.50382052193626673820234757215, 21.21681982122013875079827573393, 21.90511321637519044995893977914