| L(s) = 1 | + (0.826 − 0.563i)2-s + (0.365 − 0.930i)4-s + (−0.222 − 0.974i)8-s + (−0.0747 − 0.997i)11-s + (−0.900 − 0.433i)13-s + (−0.733 − 0.680i)16-s + (0.988 + 0.149i)17-s + (0.5 − 0.866i)19-s + (−0.623 − 0.781i)22-s + (−0.988 + 0.149i)23-s + (−0.988 + 0.149i)26-s + (−0.623 + 0.781i)29-s + (0.5 + 0.866i)31-s + (−0.988 − 0.149i)32-s + (0.900 − 0.433i)34-s + ⋯ |
| L(s) = 1 | + (0.826 − 0.563i)2-s + (0.365 − 0.930i)4-s + (−0.222 − 0.974i)8-s + (−0.0747 − 0.997i)11-s + (−0.900 − 0.433i)13-s + (−0.733 − 0.680i)16-s + (0.988 + 0.149i)17-s + (0.5 − 0.866i)19-s + (−0.623 − 0.781i)22-s + (−0.988 + 0.149i)23-s + (−0.988 + 0.149i)26-s + (−0.623 + 0.781i)29-s + (0.5 + 0.866i)31-s + (−0.988 − 0.149i)32-s + (0.900 − 0.433i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7427252558 - 1.806733871i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7427252558 - 1.806733871i\) |
| \(L(1)\) |
\(\approx\) |
\(1.254862252 - 0.8672566968i\) |
| \(L(1)\) |
\(\approx\) |
\(1.254862252 - 0.8672566968i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.988 + 0.149i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.988 + 0.149i)T \) |
| 29 | \( 1 + (-0.623 + 0.781i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.365 - 0.930i)T \) |
| 41 | \( 1 + (-0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.826 + 0.563i)T \) |
| 53 | \( 1 + (0.365 - 0.930i)T \) |
| 59 | \( 1 + (0.955 - 0.294i)T \) |
| 61 | \( 1 + (-0.365 - 0.930i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.826 + 0.563i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.900 - 0.433i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.784520274267534608835777396703, −22.25058897575658184929277727257, −21.24212826999021720481373858316, −20.61732037462186085911228258679, −19.80678056354630952623962621121, −18.65600941064181986947010293213, −17.76714684122352593751514149490, −16.85431627414691493661570276517, −16.34235358987527635934661463651, −15.21730928525062186962108030285, −14.6885533917991215952378344645, −13.8949437555746391102985576216, −12.985572948276345962714056871171, −12.01976165840968316357224434579, −11.73732938900735479685162105714, −10.159265911677431443768536165857, −9.52054986759160798008296721315, −8.030657942978514987392441703701, −7.59189973343609386284399875916, −6.569560740270436504851719035189, −5.65831487366902495748217087339, −4.737770768181107097643564837875, −3.951909595021983972445257703330, −2.80415294686316550376174347932, −1.79204673090889560726497188930,
0.6699672443329109855379682849, 2.00248196858698264481282117314, 3.08053682231203806719954022415, 3.76363762161566585534043538870, 5.11723917564368445296835623086, 5.56253675455282584285761111848, 6.72219332218097947842042353566, 7.67685100928363795158187038748, 8.89716580001264193915600766219, 9.918231781907384452572302935493, 10.622822626567923695868191466947, 11.55012930326358334183189384910, 12.28714701666007535231042510956, 13.067639856569542943876732072713, 14.05871916966960203769813169992, 14.48762374297190231746498242259, 15.629544474592635506651873214992, 16.21934268531158746863079083079, 17.36307188201168419478713748010, 18.360550705612688794849841518607, 19.25238871345761135173107946272, 19.79685833929059729256089064954, 20.698723623861230254583665190203, 21.52989319567318462561707796328, 22.1048220965702206097600597752