| L(s) = 1 | + (−0.914 + 0.404i)2-s + (0.931 − 0.363i)3-s + (0.673 − 0.739i)4-s + (−0.765 − 0.643i)5-s + (−0.705 + 0.708i)6-s + (0.136 − 0.990i)7-s + (−0.317 + 0.948i)8-s + (0.736 − 0.676i)9-s + (0.960 + 0.279i)10-s + (0.309 − 0.951i)11-s + (0.359 − 0.933i)12-s + (−0.914 − 0.404i)13-s + (0.275 + 0.961i)14-s + (−0.946 − 0.321i)15-s + (−0.0927 − 0.995i)16-s + (−0.432 − 0.901i)17-s + ⋯ |
| L(s) = 1 | + (−0.914 + 0.404i)2-s + (0.931 − 0.363i)3-s + (0.673 − 0.739i)4-s + (−0.765 − 0.643i)5-s + (−0.705 + 0.708i)6-s + (0.136 − 0.990i)7-s + (−0.317 + 0.948i)8-s + (0.736 − 0.676i)9-s + (0.960 + 0.279i)10-s + (0.309 − 0.951i)11-s + (0.359 − 0.933i)12-s + (−0.914 − 0.404i)13-s + (0.275 + 0.961i)14-s + (−0.946 − 0.321i)15-s + (−0.0927 − 0.995i)16-s + (−0.432 − 0.901i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.921 - 0.389i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.921 - 0.389i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2661962310 - 1.314112665i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2661962310 - 1.314112665i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7930781600 - 0.4161828855i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7930781600 - 0.4161828855i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 71 | \( 1 \) |
| good | 2 | \( 1 + (-0.914 + 0.404i)T \) |
| 3 | \( 1 + (0.931 - 0.363i)T \) |
| 5 | \( 1 + (-0.765 - 0.643i)T \) |
| 7 | \( 1 + (0.136 - 0.990i)T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.914 - 0.404i)T \) |
| 17 | \( 1 + (-0.432 - 0.901i)T \) |
| 19 | \( 1 + (0.424 + 0.905i)T \) |
| 23 | \( 1 + (0.814 - 0.580i)T \) |
| 29 | \( 1 + (0.736 + 0.676i)T \) |
| 31 | \( 1 + (0.994 - 0.105i)T \) |
| 37 | \( 1 + (0.814 - 0.580i)T \) |
| 41 | \( 1 + (-0.0221 - 0.999i)T \) |
| 43 | \( 1 + (-0.819 - 0.573i)T \) |
| 47 | \( 1 + (-0.350 - 0.936i)T \) |
| 53 | \( 1 + (-0.866 - 0.498i)T \) |
| 59 | \( 1 + (-0.249 - 0.968i)T \) |
| 61 | \( 1 + (-0.463 + 0.885i)T \) |
| 67 | \( 1 + (-0.899 - 0.436i)T \) |
| 73 | \( 1 + (0.987 + 0.158i)T \) |
| 79 | \( 1 + (0.949 - 0.313i)T \) |
| 83 | \( 1 + (0.834 - 0.551i)T \) |
| 89 | \( 1 + (0.955 + 0.296i)T \) |
| 97 | \( 1 + (-0.999 - 0.0442i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.44363555169255176757345259748, −17.81169142900591895961413724897, −17.16383959825769676583194165754, −16.23844872632430216409803546002, −15.45477508777245496985980878984, −15.15065426337050268400418220640, −14.760409841336184837392301974905, −13.66191467412671600037283027195, −12.77403823124369957252948781214, −12.14331882045754797261456999367, −11.518699065746232101512174717365, −10.90559180647672814311231605936, −9.97757533010605712084116508900, −9.526251933330790763748342714782, −8.95817188613515940060818405289, −8.04726990757101112763801753149, −7.794429557246248173011289504574, −6.85946889546508027854436086384, −6.38216554841382600817741969133, −4.68444461449026394727747220834, −4.448074762123836281626946138869, −3.22051776638937366967618389848, −2.79630128453403898477466294859, −2.1699833921355702879585252579, −1.30854995615733162538794765542,
0.51891306261517598982392665801, 0.91432009800177065747736836274, 1.89791278783495680055832455402, 2.95029039062587538001698159443, 3.54536341412492058520052891840, 4.59578967497067015940247358240, 5.21140636809952800683109975212, 6.478373492764387478575157395912, 7.01076159355874425924949588217, 7.742237623911786747026513136904, 8.081164178963725964741755079074, 8.82722445088654554864590059941, 9.37043573400521377186053152030, 10.17818272937712332848781612862, 10.83235729961335473648033834990, 11.7432398049536172172707404854, 12.25168238066532146316749650497, 13.23163843489200092068805000751, 13.915560563720175921157507038666, 14.48226405142886063732923365246, 15.13363481417346322171118492321, 15.90750367944115570517580482357, 16.45548796733102866743859607243, 16.98253091712009886815929370620, 17.77259698670031301337961411908