L(s) = 1 | + (−0.900 − 0.433i)2-s + (−0.988 + 0.149i)3-s + (0.623 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (0.955 + 0.294i)6-s + (−0.222 − 0.974i)8-s + (0.955 − 0.294i)9-s + (0.623 + 0.781i)10-s + (−0.733 + 0.680i)11-s + (−0.733 − 0.680i)12-s + (0.733 + 0.680i)13-s + (0.955 + 0.294i)15-s + (−0.222 + 0.974i)16-s + (0.988 + 0.149i)17-s + (−0.988 − 0.149i)18-s − 19-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (−0.988 + 0.149i)3-s + (0.623 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (0.955 + 0.294i)6-s + (−0.222 − 0.974i)8-s + (0.955 − 0.294i)9-s + (0.623 + 0.781i)10-s + (−0.733 + 0.680i)11-s + (−0.733 − 0.680i)12-s + (0.733 + 0.680i)13-s + (0.955 + 0.294i)15-s + (−0.222 + 0.974i)16-s + (0.988 + 0.149i)17-s + (−0.988 − 0.149i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2677306824 + 0.1118637197i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2677306824 + 0.1118637197i\) |
\(L(1)\) |
\(\approx\) |
\(0.3906336769 - 0.04662597922i\) |
\(L(1)\) |
\(\approx\) |
\(0.3906336769 - 0.04662597922i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.900 - 0.433i)T \) |
| 3 | \( 1 + (-0.988 + 0.149i)T \) |
| 5 | \( 1 + (-0.900 - 0.433i)T \) |
| 11 | \( 1 + (-0.733 + 0.680i)T \) |
| 13 | \( 1 + (0.733 + 0.680i)T \) |
| 17 | \( 1 + (0.988 + 0.149i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.955 - 0.294i)T \) |
| 29 | \( 1 + (-0.826 - 0.563i)T \) |
| 31 | \( 1 + (-0.365 - 0.930i)T \) |
| 37 | \( 1 + (-0.733 + 0.680i)T \) |
| 41 | \( 1 + (-0.0747 - 0.997i)T \) |
| 43 | \( 1 + (-0.955 + 0.294i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.733 - 0.680i)T \) |
| 59 | \( 1 + (0.0747 + 0.997i)T \) |
| 61 | \( 1 + (0.900 - 0.433i)T \) |
| 67 | \( 1 + (-0.955 - 0.294i)T \) |
| 71 | \( 1 + (0.955 + 0.294i)T \) |
| 73 | \( 1 + (0.900 - 0.433i)T \) |
| 79 | \( 1 + (0.0747 - 0.997i)T \) |
| 83 | \( 1 + (0.955 - 0.294i)T \) |
| 89 | \( 1 + (-0.222 + 0.974i)T \) |
| 97 | \( 1 + (-0.733 - 0.680i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.737005794596173464753836677775, −16.70576494382692091086109867765, −16.40407950840172895691939486185, −15.801460632980614451245163472115, −15.28015054624720207441056801454, −14.563131441086127512470541074227, −13.70817910995785819069179547839, −12.76419233624344993020948435467, −12.17795790306403922821790812332, −11.30866783457176419796113847782, −10.98715694983507163295428390733, −10.37231579352916386662746117398, −9.86626072108477466360624953832, −8.636736982324250389499332749973, −8.151764755128050018705016398351, −7.57382194899014128420456856657, −6.88323140962481165435615440668, −6.21826151606918722516180368394, −5.53683381614124850185479402133, −5.021607737007077166569151344595, −3.817737320849515198820604275188, −3.16057700003013517508169745684, −2.02511846133065870727016795342, −1.12221310365428441537718223152, −0.24080066767062649443384101128,
0.51224385235909782619867477720, 1.57582856665857607686396177187, 2.1496522310486143316607024725, 3.54446739020494492442429032888, 3.94874552766253612859674429411, 4.71265182735969867615860768351, 5.608051546534519040219470874250, 6.45513951335718466270375990716, 7.095883356435835175454415153688, 7.874515174629003507783220391329, 8.30195929321730133100851644763, 9.2214708013067422293989504169, 9.92978812529875601153279070307, 10.49879794830141170102599445768, 11.13359282863519794415612203548, 11.802637195712864328130752938008, 12.166457741809232943032744271986, 12.86838018589921613991867990193, 13.42232572910201473623722509250, 14.92333911725831977763035643770, 15.30895949375707332264700056124, 16.1216130622296676448984293069, 16.51585272774188209115873321228, 16.98664458878477059686414227551, 17.76965157347403763325125673978