L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.826 − 0.563i)3-s + (0.0747 − 0.997i)4-s + (−0.5 − 0.866i)5-s + (−0.222 + 0.974i)6-s + (0.623 + 0.781i)8-s + (0.365 − 0.930i)9-s + (0.955 + 0.294i)10-s + (0.365 + 0.930i)11-s + (−0.5 − 0.866i)12-s + (−0.900 + 0.433i)13-s + (−0.900 − 0.433i)15-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (0.365 + 0.930i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.826 − 0.563i)3-s + (0.0747 − 0.997i)4-s + (−0.5 − 0.866i)5-s + (−0.222 + 0.974i)6-s + (0.623 + 0.781i)8-s + (0.365 − 0.930i)9-s + (0.955 + 0.294i)10-s + (0.365 + 0.930i)11-s + (−0.5 − 0.866i)12-s + (−0.900 + 0.433i)13-s + (−0.900 − 0.433i)15-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (0.365 + 0.930i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.233485766 - 0.7563581574i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.233485766 - 0.7563581574i\) |
\(L(1)\) |
\(\approx\) |
\(0.9192158244 - 0.1294953073i\) |
\(L(1)\) |
\(\approx\) |
\(0.9192158244 - 0.1294953073i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.733 + 0.680i)T \) |
| 3 | \( 1 + (0.826 - 0.563i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.365 + 0.930i)T \) |
| 13 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (0.826 - 0.563i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.623 + 0.781i)T \) |
| 31 | \( 1 + (0.365 + 0.930i)T \) |
| 37 | \( 1 + (0.826 + 0.563i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.623 - 0.781i)T \) |
| 47 | \( 1 + (0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.988 + 0.149i)T \) |
| 61 | \( 1 + (0.365 - 0.930i)T \) |
| 67 | \( 1 + (0.955 + 0.294i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.733 - 0.680i)T \) |
| 79 | \( 1 + (0.826 + 0.563i)T \) |
| 83 | \( 1 + (0.623 + 0.781i)T \) |
| 89 | \( 1 + (0.365 - 0.930i)T \) |
| 97 | \( 1 + (-0.222 + 0.974i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.80418135744362178079866880420, −17.2030486624274018922068835371, −16.39767589384555279995575156464, −15.93883381689312718055779789246, −15.12788770365937902608496536069, −14.49862714621385328249383301052, −13.99638320209742471701407415632, −13.13315507333733771072829498887, −12.363256521827135789184673567645, −11.69705698966698719730174309820, −10.93681757791434888536579458863, −10.52197860884882835193471742264, −9.67091965743450932887621161204, −9.48829402000668170639816593975, −8.27267823054845782595989020694, −7.906708720591210610824102207698, −7.58471371462928194522149840261, −6.43626010773856061307113988964, −5.67617232489459075812592155749, −4.289415506229450550741640124012, −3.95399318673456727556180159268, −3.18018428730765884727396789752, −2.67153175698366032142413321009, −1.94526632145420639953544976744, −0.82082862340915030008746578949,
0.548483623837532849134897466690, 1.26415787238353078781791221604, 2.11248967291313906976668138677, 2.791838899418235914624359684957, 4.07945961858363461994732203355, 4.66450498508172160535814073499, 5.29960901081730155318872514677, 6.53038816534024829192934990577, 6.90012877060993905656728325603, 7.66558929293504779082189960593, 8.07451216647678991365277553019, 8.93619991448218768340643173725, 9.28107132604656842843505785697, 9.89907448013326701484647057800, 10.75577120166127107282264604097, 11.90315136961498220550792715053, 12.254034949408760957442773102577, 12.90198178741412535787620488312, 13.941183382637260493853113322986, 14.30510855119790614772229082249, 15.01701638934757526421397257058, 15.571088680768603971420002622214, 16.241770191214777035353539198079, 16.97123039519541464447396323433, 17.46888505850499647693656819939