| L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s + 13-s + 16-s − 18-s − 19-s + 22-s + 23-s + 24-s − 26-s − 27-s − 29-s + 31-s − 32-s + 33-s + 36-s + 37-s + 38-s − 39-s + 41-s − 43-s + ⋯ |
| L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s + 13-s + 16-s − 18-s − 19-s + 22-s + 23-s + 24-s − 26-s − 27-s − 29-s + 31-s − 32-s + 33-s + 36-s + 37-s + 38-s − 39-s + 41-s − 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6962425640\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6962425640\) |
| \(L(1)\) |
\(\approx\) |
\(0.5151709684\) |
| \(L(1)\) |
\(\approx\) |
\(0.5151709684\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.28613442492412909276907636285, −21.96627951855052983796675310906, −21.05718133971865295247220020140, −20.61573534274718422927869164914, −19.20843609464431664698929584475, −18.650815639886871383962593809920, −17.930726870037727701003923563190, −17.14770131008518939727889578926, −16.41309124839051634132709051498, −15.66091283346163276502025789197, −14.95973196617220197664389489988, −13.28540025604903780027517575641, −12.62330644695811982629292163386, −11.476153419263577763240502147903, −10.88372643706646597804171011369, −10.23998969132813607806057601284, −9.18686137970053743649733094578, −8.17342492969790073140547450349, −7.27846063902029961591110359771, −6.30840887631620980209081799354, −5.614309549512400054084032392507, −4.35066332176245572956405227893, −2.90430138970679852717418859578, −1.62501599285997149546930438665, −0.54201955024844608383065250940,
0.54201955024844608383065250940, 1.62501599285997149546930438665, 2.90430138970679852717418859578, 4.35066332176245572956405227893, 5.614309549512400054084032392507, 6.30840887631620980209081799354, 7.27846063902029961591110359771, 8.17342492969790073140547450349, 9.18686137970053743649733094578, 10.23998969132813607806057601284, 10.88372643706646597804171011369, 11.476153419263577763240502147903, 12.62330644695811982629292163386, 13.28540025604903780027517575641, 14.95973196617220197664389489988, 15.66091283346163276502025789197, 16.41309124839051634132709051498, 17.14770131008518939727889578926, 17.930726870037727701003923563190, 18.650815639886871383962593809920, 19.20843609464431664698929584475, 20.61573534274718422927869164914, 21.05718133971865295247220020140, 21.96627951855052983796675310906, 23.28613442492412909276907636285