L(s) = 1 | + (−0.207 + 0.978i)3-s + (−0.866 + 0.5i)7-s + (−0.913 − 0.406i)9-s + (0.913 − 0.406i)11-s + (0.978 − 0.207i)17-s + (−0.978 + 0.207i)19-s + (−0.309 − 0.951i)21-s + (−0.913 + 0.406i)23-s + (0.587 − 0.809i)27-s + (0.207 − 0.978i)29-s + (−0.951 − 0.309i)31-s + (0.207 + 0.978i)33-s + (0.104 + 0.994i)37-s + (−0.994 + 0.104i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (−0.207 + 0.978i)3-s + (−0.866 + 0.5i)7-s + (−0.913 − 0.406i)9-s + (0.913 − 0.406i)11-s + (0.978 − 0.207i)17-s + (−0.978 + 0.207i)19-s + (−0.309 − 0.951i)21-s + (−0.913 + 0.406i)23-s + (0.587 − 0.809i)27-s + (0.207 − 0.978i)29-s + (−0.951 − 0.309i)31-s + (0.207 + 0.978i)33-s + (0.104 + 0.994i)37-s + (−0.994 + 0.104i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0503i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0503i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9482007717 + 0.02389878891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9482007717 + 0.02389878891i\) |
\(L(1)\) |
\(\approx\) |
\(0.7942817090 + 0.2281215543i\) |
\(L(1)\) |
\(\approx\) |
\(0.7942817090 + 0.2281215543i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.207 + 0.978i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.913 - 0.406i)T \) |
| 17 | \( 1 + (0.978 - 0.207i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (-0.913 + 0.406i)T \) |
| 29 | \( 1 + (0.207 - 0.978i)T \) |
| 31 | \( 1 + (-0.951 - 0.309i)T \) |
| 37 | \( 1 + (0.104 + 0.994i)T \) |
| 41 | \( 1 + (-0.994 + 0.104i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.913 + 0.406i)T \) |
| 61 | \( 1 + (-0.994 - 0.104i)T \) |
| 67 | \( 1 + (0.669 + 0.743i)T \) |
| 71 | \( 1 + (0.743 + 0.669i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.406 + 0.913i)T \) |
| 97 | \( 1 + (0.743 + 0.669i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.09669688147055322611645719477, −17.230280361559492535951209906367, −16.71134744115806160999920654296, −16.345513552153385332625523595464, −15.23494171836663693420867210192, −14.44917051418660860719087549867, −14.032138836495528137048636211536, −13.21302415533663945579544254638, −12.50496258143729910919673145761, −12.285823192078774672934599726558, −11.38578516247406875479607084276, −10.58512820747317846110731179018, −9.9920184287287115803320767024, −9.110665156795389335739088148630, −8.44812945450216965530252592935, −7.6563596761346764903641102545, −6.830341153955634824860205069702, −6.61187945709654816645018790691, −5.76908255922780631608888709418, −4.98018468334204733710860327081, −3.85028312196157600366186177630, −3.409177885717190702280370516076, −2.28112437241857963131163279997, −1.62970257300948533794241827137, −0.70518351283211150609651999457,
0.35438233362988161956216856825, 1.651675678963276220866763325011, 2.685288438425519804429226847595, 3.50576101625732358322605388727, 3.880693255771305280780186285064, 4.825990769025320157275197647970, 5.67325623893715502182003178401, 6.17522932648167101927442659570, 6.776809812130240045669292653891, 8.016905928112599347222773796546, 8.588790351708769830351715870972, 9.3640355418685707936363366444, 9.896843475728015269140395732978, 10.34388027105503629477222875842, 11.47008436409756754358892672344, 11.75506965740119435427143412521, 12.49999358399825085016433064148, 13.388727373882125156973050510246, 14.07992345747071914990148573190, 14.96484652587855036371175668121, 15.14859847859269785385627030192, 16.25610261151440270902190253200, 16.45687898944701183290674859371, 17.07773327815195295983541656103, 17.87910584034333569280667687747