L(s) = 1 | + (−0.5 − 0.866i)7-s + (0.623 − 0.781i)11-s + (−0.733 + 0.680i)13-s + (0.955 − 0.294i)17-s + (−0.988 + 0.149i)19-s + (0.365 + 0.930i)23-s + (−0.0747 − 0.997i)29-s + (0.826 − 0.563i)31-s + (0.5 − 0.866i)37-s + (0.900 + 0.433i)41-s + (0.623 + 0.781i)47-s + (−0.5 + 0.866i)49-s + (0.733 + 0.680i)53-s + (−0.222 + 0.974i)59-s + (0.826 + 0.563i)61-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)7-s + (0.623 − 0.781i)11-s + (−0.733 + 0.680i)13-s + (0.955 − 0.294i)17-s + (−0.988 + 0.149i)19-s + (0.365 + 0.930i)23-s + (−0.0747 − 0.997i)29-s + (0.826 − 0.563i)31-s + (0.5 − 0.866i)37-s + (0.900 + 0.433i)41-s + (0.623 + 0.781i)47-s + (−0.5 + 0.866i)49-s + (0.733 + 0.680i)53-s + (−0.222 + 0.974i)59-s + (0.826 + 0.563i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.626 - 0.779i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.626 - 0.779i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.450083702 - 0.6948514646i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.450083702 - 0.6948514646i\) |
\(L(1)\) |
\(\approx\) |
\(1.033402337 - 0.1620372863i\) |
\(L(1)\) |
\(\approx\) |
\(1.033402337 - 0.1620372863i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.623 - 0.781i)T \) |
| 13 | \( 1 + (-0.733 + 0.680i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 19 | \( 1 + (-0.988 + 0.149i)T \) |
| 23 | \( 1 + (0.365 + 0.930i)T \) |
| 29 | \( 1 + (-0.0747 - 0.997i)T \) |
| 31 | \( 1 + (0.826 - 0.563i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.623 + 0.781i)T \) |
| 53 | \( 1 + (0.733 + 0.680i)T \) |
| 59 | \( 1 + (-0.222 + 0.974i)T \) |
| 61 | \( 1 + (0.826 + 0.563i)T \) |
| 67 | \( 1 + (-0.988 + 0.149i)T \) |
| 71 | \( 1 + (0.365 - 0.930i)T \) |
| 73 | \( 1 + (-0.733 + 0.680i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.0747 + 0.997i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + (-0.623 + 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.11220773334622712491034452396, −17.33084786107298300131831135047, −16.8738064103317985708782739318, −16.08310021960164433318340168181, −15.333054937677122894052197698187, −14.72420113606631341503011742765, −14.43162500741280047821804309685, −13.2286276566388265282393332181, −12.52746466630554266233945735726, −12.33126726361267721671868598951, −11.538412445328619183239849687893, −10.47737319171688012020686451793, −10.0736476191789562647643720472, −9.296471461129166315271743636660, −8.63102859485819967133341515213, −7.985691748742947356547484663975, −6.99597093042858106942168215751, −6.53468526686364129714281075091, −5.66646001405956577249707162356, −5.00125109464933615140905775110, −4.24365893076464880611284068743, −3.28395160273746027026686210921, −2.61099425343558327940294764965, −1.88103512808175517077932776865, −0.78071233596559662415236633796,
0.58157064017643707975635697707, 1.346862767642720480917082765602, 2.46821280956159928863967981232, 3.18986943218106817031569984194, 4.15996299415611818742938731666, 4.38812030013033015300233659745, 5.75910311828310102419632588251, 6.096183508236290081905280462357, 7.10592338262776346825976117231, 7.51267177217242184468336579983, 8.37500179514191358477829206189, 9.305835386311406800944268013949, 9.69764437472582823133298431990, 10.48706320930765184430780682553, 11.221892892247079048941734772489, 11.84812002918988683962331016182, 12.54112759408638956402546080413, 13.3978986564352871759956315082, 13.84561033475637598505833226555, 14.53448314599270851627053156766, 15.14778835410665242899023398409, 16.153816736137751523208707438616, 16.61135064811936003648375348998, 17.12396143779175660625716216026, 17.69301119118804921284401597583