L(s) = 1 | + (0.866 + 0.5i)7-s + (−0.222 + 0.974i)11-s + (−0.563 − 0.826i)13-s + (0.997 + 0.0747i)17-s + (−0.733 + 0.680i)19-s + (−0.294 − 0.955i)23-s + (−0.365 − 0.930i)29-s + (−0.988 − 0.149i)31-s + (0.866 − 0.5i)37-s + (−0.623 + 0.781i)41-s + (0.974 − 0.222i)47-s + (0.5 + 0.866i)49-s + (−0.563 + 0.826i)53-s + (0.900 − 0.433i)59-s + (0.988 − 0.149i)61-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)7-s + (−0.222 + 0.974i)11-s + (−0.563 − 0.826i)13-s + (0.997 + 0.0747i)17-s + (−0.733 + 0.680i)19-s + (−0.294 − 0.955i)23-s + (−0.365 − 0.930i)29-s + (−0.988 − 0.149i)31-s + (0.866 − 0.5i)37-s + (−0.623 + 0.781i)41-s + (0.974 − 0.222i)47-s + (0.5 + 0.866i)49-s + (−0.563 + 0.826i)53-s + (0.900 − 0.433i)59-s + (0.988 − 0.149i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.809650547 + 0.3222827185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.809650547 + 0.3222827185i\) |
\(L(1)\) |
\(\approx\) |
\(1.139519131 + 0.08796089487i\) |
\(L(1)\) |
\(\approx\) |
\(1.139519131 + 0.08796089487i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.222 + 0.974i)T \) |
| 13 | \( 1 + (-0.563 - 0.826i)T \) |
| 17 | \( 1 + (0.997 + 0.0747i)T \) |
| 19 | \( 1 + (-0.733 + 0.680i)T \) |
| 23 | \( 1 + (-0.294 - 0.955i)T \) |
| 29 | \( 1 + (-0.365 - 0.930i)T \) |
| 31 | \( 1 + (-0.988 - 0.149i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.974 - 0.222i)T \) |
| 53 | \( 1 + (-0.563 + 0.826i)T \) |
| 59 | \( 1 + (0.900 - 0.433i)T \) |
| 61 | \( 1 + (0.988 - 0.149i)T \) |
| 67 | \( 1 + (-0.680 - 0.733i)T \) |
| 71 | \( 1 + (-0.955 - 0.294i)T \) |
| 73 | \( 1 + (0.563 + 0.826i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.930 + 0.365i)T \) |
| 89 | \( 1 + (0.365 - 0.930i)T \) |
| 97 | \( 1 + (0.974 + 0.222i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.913188354737976077078362452033, −17.2497997630033711899875160219, −16.611106025035577922779451456036, −16.188809081054077088671091220414, −15.15994490923960450652823121663, −14.564285251677897051028671105305, −14.03722247989716629357875518508, −13.400478026602511466931387154390, −12.65781611999469057013875335300, −11.71752787902624204157910128379, −11.342400405195544514166500179836, −10.61936864502272370254204808489, −9.95020034321442879419814133199, −9.02503717280787705904156153537, −8.53574546894006257708221144622, −7.59086991088345225063820111316, −7.24220114380487723927498075462, −6.27773860286791626782214836502, −5.40804978199514490117623018369, −4.91711197812469084399584378618, −3.96920798512619223447411616387, −3.38526713826534925700054542445, −2.32984175701926714443624023712, −1.58618284657143571610840973800, −0.671710247789438931441896128,
0.72255099559704927952427257188, 1.93988997239301239801077956051, 2.273451475664982329179755695138, 3.31943204228188716754895506127, 4.275300382917089143883974489680, 4.86274659176844161928800898287, 5.63854373515069707212254908055, 6.19516380850763665268504167868, 7.38492107202614004548310485934, 7.77848951441906658156760056849, 8.396888788653005910308994297115, 9.27978028889093561303966536830, 10.063179648747372136304785534705, 10.50496620872065261611952124574, 11.38415690998323396345727522762, 12.15710572949693861708282061970, 12.56499259698976458707045386523, 13.217856565779895456435016310440, 14.39475761327691762593139200551, 14.686854082070009077327521008, 15.18308476096731003818911484430, 15.9952669776473402526705409536, 16.93232488147903542747826969940, 17.25320532231922339678192987881, 18.220609608483539262578075405989