L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)7-s − i·8-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + i·17-s − 19-s + (−0.866 − 0.5i)22-s + (0.866 + 0.5i)23-s + 26-s − i·28-s + (0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)7-s − i·8-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + i·17-s − 19-s + (−0.866 − 0.5i)22-s + (0.866 + 0.5i)23-s + 26-s − i·28-s + (0.5 + 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.370 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.370 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.089393876 - 1.416821558i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.089393876 - 1.416821558i\) |
\(L(1)\) |
\(\approx\) |
\(1.662104067 - 0.7152142400i\) |
\(L(1)\) |
\(\approx\) |
\(1.662104067 - 0.7152142400i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.01172251291200690580101245801, −33.25653190038167112890619229099, −31.89120861406081866214211640974, −30.94146294318809681585321290365, −30.0733115480033484527436801700, −28.52881146468825999469346907028, −27.17809141484929892114680498560, −25.664790105262540115050056735206, −24.857456588195913533412338521291, −23.564101765526483804325748135303, −22.645703368796494131975320336025, −21.184197901919040255671317947, −20.48414765842990332426277294512, −18.38262166361494488055232062814, −17.22403862792126177208631829324, −15.66433874171719306735619303876, −14.82456003075162729769204335935, −13.425728737179964487181909763810, −12.19459817744109971385172785361, −10.87606403167583598028331885299, −8.637184166945910819260063887699, −7.33113221226391634339523192714, −5.671260819630638130284355295785, −4.41542201283699230114209826680, −2.430404657581143479635392788174,
1.49571308205630303629853667443, 3.52118562865846980276665911532, 4.98797822013136312246649457280, 6.5293187531311927236861314421, 8.456015699452004513454125940380, 10.54877009726074926044277444140, 11.3261798640330158092720241250, 12.96639624232198349239188900447, 14.01542558368522215548520337583, 15.20302890355786756304450356509, 16.69247618605106810511861226911, 18.43785434689263770344974137147, 19.67249252540702479960660775924, 21.03974624263197048446988086363, 21.643856442365695998624218737538, 23.47909827477132417934059145050, 23.84360188683474264936280512574, 25.41581901329055039096638944902, 27.01772544332566706321391337961, 28.2476323743655423292087950918, 29.42454792684348963400871208636, 30.46814483438549901161605320880, 31.3599118117517249822078823486, 32.64549932824481790078654114306, 33.563139373540307888599398043508