Properties

Label 1-45-45.32-r0-0-0
Degree 11
Conductor 4545
Sign 0.746+0.665i0.746 + 0.665i
Analytic cond. 0.2089790.208979
Root an. cond. 0.2089790.208979
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + i·8-s + (0.5 − 0.866i)11-s + (−0.866 + 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s i·17-s − 19-s + (0.866 − 0.5i)22-s + (0.866 − 0.5i)23-s − 26-s i·28-s + (−0.5 + 0.866i)29-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + i·8-s + (0.5 − 0.866i)11-s + (−0.866 + 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s i·17-s − 19-s + (0.866 − 0.5i)22-s + (0.866 − 0.5i)23-s − 26-s i·28-s + (−0.5 + 0.866i)29-s + ⋯

Functional equation

Λ(s)=(45s/2ΓR(s)L(s)=((0.746+0.665i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(45s/2ΓR(s)L(s)=((0.746+0.665i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 4545    =    3253^{2} \cdot 5
Sign: 0.746+0.665i0.746 + 0.665i
Analytic conductor: 0.2089790.208979
Root analytic conductor: 0.2089790.208979
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ45(32,)\chi_{45} (32, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 45, (0: ), 0.746+0.665i)(1,\ 45,\ (0:\ ),\ 0.746 + 0.665i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.121634195+0.4273851470i1.121634195 + 0.4273851470i
L(12)L(\frac12) \approx 1.121634195+0.4273851470i1.121634195 + 0.4273851470i
L(1)L(1) \approx 1.325722943+0.3763795750i1.325722943 + 0.3763795750i
L(1)L(1) \approx 1.325722943+0.3763795750i1.325722943 + 0.3763795750i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
good2 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
13 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
17 1iT 1 - iT
19 1T 1 - T
23 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
29 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
31 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
37 1+iT 1 + iT
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
47 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
53 1+iT 1 + iT
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
71 1T 1 - T
73 1iT 1 - iT
79 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
83 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
89 1+T 1 + T
97 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−34.00424710182707550064941062131, −32.706828236563411129643526471574, −31.94992297959395786946267085022, −30.765176794437272535741646955643, −29.682853874499062845660019833697, −28.61826334367469613993085645601, −27.59103933300739950094295491547, −25.68879787270294708197101095750, −24.72183463160220183854718004095, −23.26671817717762986731123883769, −22.35187144111126316973226425094, −21.3221358381869911538380189064, −19.83993267788212567375159670710, −19.0942840596746855877614191987, −17.22470879883436590376710263106, −15.51854160130533112352736896324, −14.65619229002377086451959002444, −12.933750872201971845870702291323, −12.2586821272709000813693138281, −10.57842653171016829805642816678, −9.33138809756658955992612103916, −6.981415230962860811795010775574, −5.58872653978057000220107781450, −3.928016253803500703636670860979, −2.27801123733464486006762319605, 2.95556757703445041003603393133, 4.46770315626047345629366907824, 6.19824974543228993050043173011, 7.32091131843316737551159368428, 9.14276701251768334339005258195, 11.07297458220718648110346385663, 12.50645745592483848194158297560, 13.65955531716316586034419374885, 14.79628171318518435844216429572, 16.32354548153577964310638340464, 17.00476420403583707246790406379, 19.02740114767636611270912008177, 20.34043452267309477114702265649, 21.74422327324655778294265741098, 22.65417322400857212273126914082, 23.8332839457911888648774790342, 24.922872477428019857450742488324, 26.10108139965325163671333111158, 27.16101443131673720727628981936, 29.241168675169633748227985056820, 29.75946837397514624139563632631, 31.34730036269974033254106837475, 32.17900424643717099887851175528, 33.164274991087520294780567206496, 34.35120427433898782995849327214

Graph of the ZZ-function along the critical line