| L(s) = 1 | + (0.645 + 0.764i)2-s + (−0.236 + 0.971i)3-s + (−0.167 + 0.985i)4-s + (−0.623 − 0.781i)5-s + (−0.894 + 0.446i)6-s + (−0.483 − 0.875i)7-s + (−0.861 + 0.508i)8-s + (−0.888 − 0.458i)9-s + (0.195 − 0.980i)10-s + (0.993 + 0.111i)11-s + (−0.918 − 0.395i)12-s + (0.754 + 0.655i)13-s + (0.356 − 0.934i)14-s + (0.906 − 0.421i)15-s + (−0.943 − 0.330i)16-s + (0.868 − 0.495i)17-s + ⋯ |
| L(s) = 1 | + (0.645 + 0.764i)2-s + (−0.236 + 0.971i)3-s + (−0.167 + 0.985i)4-s + (−0.623 − 0.781i)5-s + (−0.894 + 0.446i)6-s + (−0.483 − 0.875i)7-s + (−0.861 + 0.508i)8-s + (−0.888 − 0.458i)9-s + (0.195 − 0.980i)10-s + (0.993 + 0.111i)11-s + (−0.918 − 0.395i)12-s + (0.754 + 0.655i)13-s + (0.356 − 0.934i)14-s + (0.906 − 0.421i)15-s + (−0.943 − 0.330i)16-s + (0.868 − 0.495i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9663540106 + 1.838915853i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9663540106 + 1.838915853i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9924003585 + 0.7492303412i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9924003585 + 0.7492303412i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (0.645 + 0.764i)T \) |
| 3 | \( 1 + (-0.236 + 0.971i)T \) |
| 5 | \( 1 + (-0.623 - 0.781i)T \) |
| 7 | \( 1 + (-0.483 - 0.875i)T \) |
| 11 | \( 1 + (0.993 + 0.111i)T \) |
| 13 | \( 1 + (0.754 + 0.655i)T \) |
| 17 | \( 1 + (0.868 - 0.495i)T \) |
| 19 | \( 1 + (0.977 - 0.208i)T \) |
| 23 | \( 1 + (0.815 + 0.578i)T \) |
| 29 | \( 1 + (-0.716 + 0.697i)T \) |
| 31 | \( 1 + (-0.716 - 0.697i)T \) |
| 37 | \( 1 + (-0.881 - 0.471i)T \) |
| 41 | \( 1 + (0.726 + 0.686i)T \) |
| 43 | \( 1 + (-0.395 - 0.918i)T \) |
| 47 | \( 1 + (0.446 + 0.894i)T \) |
| 53 | \( 1 + (-0.686 + 0.726i)T \) |
| 59 | \( 1 + (-0.408 - 0.912i)T \) |
| 61 | \( 1 + (0.996 - 0.0840i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.471 + 0.881i)T \) |
| 73 | \( 1 + (0.839 + 0.543i)T \) |
| 79 | \( 1 + (0.634 - 0.773i)T \) |
| 83 | \( 1 + (0.854 - 0.520i)T \) |
| 89 | \( 1 + (0.666 + 0.745i)T \) |
| 97 | \( 1 + (0.249 + 0.968i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.161560372949915606916236960057, −22.63963136052747759064438339795, −22.16720080496190052910823854435, −20.9339050275509585597613347487, −19.81998825738691247628647292538, −19.21266288181962280558997683945, −18.59304334378710909908619476805, −17.95485671270048083410227422687, −16.50381597131654031206767510888, −15.3461044772318691140143905213, −14.591576096353721546843548329554, −13.76353867285338174991472496795, −12.696334809047112252177384537378, −12.09319582979207897570197202733, −11.385658383491335655599281643449, −10.54735134330879870588773278748, −9.26948447769566349946951623388, −8.18027948367149999065552142036, −6.90036075247531167179342312477, −6.12505453454907597683585991600, −5.337664468536954857724733584598, −3.58659785392872687068313027493, −3.0682405245790463698916653729, −1.79795179397078753047045055644, −0.61364607361479808691825269889,
0.91733897959350920287847994464, 3.488276497832574233656992079377, 3.76260467550418889535573963654, 4.79483792770058779756460118998, 5.647997713913240491067176522500, 6.84461917877295959942207680783, 7.719516998428402162050244879448, 9.08195874432331869278591137944, 9.41573072359365891018867239368, 11.10550064340199138691133296539, 11.74609550140119103897312634138, 12.75036175803030773463649261143, 13.82874144585370115817804559120, 14.52654142120384282210136495271, 15.64282906557734635399954778664, 16.268614833523073180761435703485, 16.76421251052238995265800107946, 17.48423220845388010163273738600, 19.02781071126496898825719701080, 20.36192670672924105516762575085, 20.558301300697894905727150855950, 21.71555243070254994531278524080, 22.562459092722750255982150402681, 23.24395225500912559536587822229, 23.80076177065584734838557683276