| L(s) = 1 | + (0.934 − 0.356i)2-s + (−0.395 + 0.918i)3-s + (0.745 − 0.666i)4-s + (0.222 + 0.974i)5-s + (−0.0420 + 0.999i)6-s + (0.578 − 0.815i)7-s + (0.458 − 0.888i)8-s + (−0.686 − 0.726i)9-s + (0.555 + 0.831i)10-s + (0.846 + 0.532i)11-s + (0.317 + 0.948i)12-s + (0.343 + 0.939i)13-s + (0.249 − 0.968i)14-s + (−0.983 − 0.181i)15-s + (0.111 − 0.993i)16-s + (0.236 + 0.971i)17-s + ⋯ |
| L(s) = 1 | + (0.934 − 0.356i)2-s + (−0.395 + 0.918i)3-s + (0.745 − 0.666i)4-s + (0.222 + 0.974i)5-s + (−0.0420 + 0.999i)6-s + (0.578 − 0.815i)7-s + (0.458 − 0.888i)8-s + (−0.686 − 0.726i)9-s + (0.555 + 0.831i)10-s + (0.846 + 0.532i)11-s + (0.317 + 0.948i)12-s + (0.343 + 0.939i)13-s + (0.249 − 0.968i)14-s + (−0.983 − 0.181i)15-s + (0.111 − 0.993i)16-s + (0.236 + 0.971i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.764 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.764 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.780028787 + 1.382354818i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.780028787 + 1.382354818i\) |
| \(L(1)\) |
\(\approx\) |
\(1.983698214 + 0.3247182097i\) |
| \(L(1)\) |
\(\approx\) |
\(1.983698214 + 0.3247182097i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (0.934 - 0.356i)T \) |
| 3 | \( 1 + (-0.395 + 0.918i)T \) |
| 5 | \( 1 + (0.222 + 0.974i)T \) |
| 7 | \( 1 + (0.578 - 0.815i)T \) |
| 11 | \( 1 + (0.846 + 0.532i)T \) |
| 13 | \( 1 + (0.343 + 0.939i)T \) |
| 17 | \( 1 + (0.236 + 0.971i)T \) |
| 19 | \( 1 + (-0.263 - 0.964i)T \) |
| 23 | \( 1 + (0.998 - 0.0560i)T \) |
| 29 | \( 1 + (0.0700 - 0.997i)T \) |
| 31 | \( 1 + (0.0700 + 0.997i)T \) |
| 37 | \( 1 + (-0.995 - 0.0980i)T \) |
| 41 | \( 1 + (0.601 - 0.799i)T \) |
| 43 | \( 1 + (0.948 + 0.317i)T \) |
| 47 | \( 1 + (0.999 + 0.0420i)T \) |
| 53 | \( 1 + (0.799 + 0.601i)T \) |
| 59 | \( 1 + (0.508 + 0.861i)T \) |
| 61 | \( 1 + (-0.408 - 0.912i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.0980 + 0.995i)T \) |
| 73 | \( 1 + (-0.495 + 0.868i)T \) |
| 79 | \( 1 + (0.471 + 0.881i)T \) |
| 83 | \( 1 + (-0.929 + 0.369i)T \) |
| 89 | \( 1 + (0.483 + 0.875i)T \) |
| 97 | \( 1 + (-0.303 + 0.952i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.87280890566994868411631046519, −22.85191319157377621789438800816, −22.25812319730967792665644676991, −21.13689421924141807342698705759, −20.53705820487376355942290771847, −19.49665928278470965574989201462, −18.39843517827105408544704730179, −17.45457345762096247564953923544, −16.752649519375590483336790072804, −15.96150831453607142106713104436, −14.79043817036654831996127474818, −13.94325807538083514430481162200, −13.11423871937817492785506029392, −12.32047670069256606055151481823, −11.79240577732389855890757295621, −10.8505143165671526547296032608, −8.98351593802478697418174017191, −8.25169190199324454462906827422, −7.34630059008757570394270758560, −6.0425722233784474939980664879, −5.56999682311940280249070431191, −4.71006480477844345040926777821, −3.21310208839596084645615104934, −1.97337589962010895900852723227, −0.934785886660113757405869919851,
1.20861342873260529820827075198, 2.54112387438785296112068971383, 3.89390010658101258386823413215, 4.22336794147792625157536996903, 5.45243383110372151604911993759, 6.55350716353991552743142664126, 7.124668861599936569333689477448, 8.98468772999199646743731353050, 10.06401111872049273372848957049, 10.82239712742842448398640927420, 11.30001226307403296962718848045, 12.2683688995310517399925943052, 13.67472105772245182689020352403, 14.34811620073808868971287061285, 14.96546420168416565663247512846, 15.78377295246761013257868774289, 17.04351969997024005173353329851, 17.52943682940300708189099771697, 19.042839763991549455636301516511, 19.76080291439682664133754810175, 20.87767486137928278950881220813, 21.38725763191526883692502294895, 22.11883808930721676056014877868, 23.01518789850706921243894143802, 23.40965084831203620477462142138