| L(s) = 1 | + (−0.995 + 0.0950i)5-s + (−0.327 − 0.945i)11-s + (−0.959 + 0.281i)13-s + (−0.928 − 0.371i)17-s + (0.928 − 0.371i)19-s + (0.981 − 0.189i)25-s + (−0.142 − 0.989i)29-s + (0.0475 + 0.998i)31-s + (0.580 − 0.814i)37-s + (0.415 − 0.909i)41-s + (−0.841 − 0.540i)43-s + (0.5 + 0.866i)47-s + (−0.723 + 0.690i)53-s + (0.415 + 0.909i)55-s + (0.235 − 0.971i)59-s + ⋯ |
| L(s) = 1 | + (−0.995 + 0.0950i)5-s + (−0.327 − 0.945i)11-s + (−0.959 + 0.281i)13-s + (−0.928 − 0.371i)17-s + (0.928 − 0.371i)19-s + (0.981 − 0.189i)25-s + (−0.142 − 0.989i)29-s + (0.0475 + 0.998i)31-s + (0.580 − 0.814i)37-s + (0.415 − 0.909i)41-s + (−0.841 − 0.540i)43-s + (0.5 + 0.866i)47-s + (−0.723 + 0.690i)53-s + (0.415 + 0.909i)55-s + (0.235 − 0.971i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.007957693377 - 0.03300122114i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.007957693377 - 0.03300122114i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7068228565 - 0.07402068578i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7068228565 - 0.07402068578i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (-0.995 + 0.0950i)T \) |
| 11 | \( 1 + (-0.327 - 0.945i)T \) |
| 13 | \( 1 + (-0.959 + 0.281i)T \) |
| 17 | \( 1 + (-0.928 - 0.371i)T \) |
| 19 | \( 1 + (0.928 - 0.371i)T \) |
| 29 | \( 1 + (-0.142 - 0.989i)T \) |
| 31 | \( 1 + (0.0475 + 0.998i)T \) |
| 37 | \( 1 + (0.580 - 0.814i)T \) |
| 41 | \( 1 + (0.415 - 0.909i)T \) |
| 43 | \( 1 + (-0.841 - 0.540i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.723 + 0.690i)T \) |
| 59 | \( 1 + (0.235 - 0.971i)T \) |
| 61 | \( 1 + (0.888 + 0.458i)T \) |
| 67 | \( 1 + (-0.981 + 0.189i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.786 + 0.618i)T \) |
| 79 | \( 1 + (0.723 + 0.690i)T \) |
| 83 | \( 1 + (-0.415 - 0.909i)T \) |
| 89 | \( 1 + (-0.0475 + 0.998i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.95964452156715448228774740241, −18.22260690685650453741129515275, −17.68646227690768196066076476928, −16.78208028166802957924818571908, −16.25363859940472850925557462258, −15.36351540965702957589103975642, −15.012874997369854979763827992055, −14.38720319519955041439532741493, −13.20253514119521106700737897579, −12.82380556262133131410412776763, −11.94892426861985061390342116233, −11.55175542558165683568618693803, −10.641599987545555036404510328787, −9.92295094833712451390910730031, −9.26123416709499599624741866259, −8.30812484366643791443808019687, −7.700197039858022478806409825956, −7.15653607000845335125747463710, −6.37159319285884505400505874574, −5.20544530124733701355002215912, −4.71493510880117275310136015858, −3.96275091416166034069360722218, −3.076535489965381629304982479430, −2.29127462539232666111616056038, −1.2554513528546650161975148908,
0.012070437311772897510700553850, 0.90627488370843643195702181077, 2.28252245525304436750938911003, 2.94778294380126192426595314108, 3.76112685971122258443628011100, 4.56934903863370085216804213300, 5.21737034366252801421240441677, 6.15615187332029504506797851385, 7.09620745521681532295205488981, 7.5131657584089380396754965008, 8.35216635436446869670978570073, 9.02357238005233854852475911684, 9.757608273651152058389336664440, 10.776837344598429888971317092620, 11.23292997897647154873453936651, 11.91997085137785733935537439600, 12.52471002307602289463939904087, 13.44556469680982280039245151770, 14.051286549784487572794749150663, 14.77145181586122908729536940039, 15.667875660299685753257299721769, 15.91842036457802128752475197546, 16.698410719244218435061396198671, 17.51700171549880991103217821562, 18.19362240908107474286930201332