| L(s) = 1 | + (−0.743 − 0.669i)2-s + (−0.406 − 0.913i)3-s + (0.104 + 0.994i)4-s + (−0.309 + 0.951i)6-s + (0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.866 − 0.5i)12-s + (−0.951 + 0.309i)13-s + (−0.978 + 0.207i)16-s + (0.743 − 0.669i)17-s + (0.994 − 0.104i)18-s + (−0.104 + 0.994i)19-s + (−0.866 + 0.5i)23-s + (−0.978 − 0.207i)24-s + (0.913 + 0.406i)26-s + (0.951 + 0.309i)27-s + ⋯ |
| L(s) = 1 | + (−0.743 − 0.669i)2-s + (−0.406 − 0.913i)3-s + (0.104 + 0.994i)4-s + (−0.309 + 0.951i)6-s + (0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.866 − 0.5i)12-s + (−0.951 + 0.309i)13-s + (−0.978 + 0.207i)16-s + (0.743 − 0.669i)17-s + (0.994 − 0.104i)18-s + (−0.104 + 0.994i)19-s + (−0.866 + 0.5i)23-s + (−0.978 − 0.207i)24-s + (0.913 + 0.406i)26-s + (0.951 + 0.309i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.794 + 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.794 + 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3659646578 + 0.1237463056i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3659646578 + 0.1237463056i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5050543209 - 0.1714817661i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5050543209 - 0.1714817661i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.743 - 0.669i)T \) |
| 3 | \( 1 + (-0.406 - 0.913i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 + (0.743 - 0.669i)T \) |
| 19 | \( 1 + (-0.104 + 0.994i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (-0.978 - 0.207i)T \) |
| 37 | \( 1 + (-0.406 + 0.913i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.994 - 0.104i)T \) |
| 53 | \( 1 + (-0.207 + 0.978i)T \) |
| 59 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.978 - 0.207i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.994 - 0.104i)T \) |
| 79 | \( 1 + (0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.951 + 0.309i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.36643024209428940897366195095, −23.72009346009519660556220048134, −22.67871273847513303954652693541, −21.969320706223622062031401403583, −20.86046577130760286518850363910, −19.94191820179216759550306295883, −19.15252682823038299433228198343, −17.91388221340631749910110662761, −17.29874218655448140946018763021, −16.50971968525795835221052616405, −15.72180614992980158536464992072, −14.85051337011156111532681653583, −14.25536819150485258359674994931, −12.67587499130571871930787033889, −11.48087519549174185867491354307, −10.575743256980244656438188086213, −9.83766286162489195368658624374, −9.030808893095095193188802536818, −7.97403669440866357584677601406, −6.88908856295422892470061259253, −5.7570755344652115392648310524, −5.056638172363381484439302417666, −3.83415045163642527647138303188, −2.211488056817129083432160013429, −0.32130155857323224741005313612,
1.31902452404346789771899678044, 2.2693613922250804043467952195, 3.474165884279147824368981791234, 4.988236638376292419058909094864, 6.268925677972315389358039811980, 7.464759776007460716860596607, 7.89268399007786291028565975562, 9.22916253957540544717082786904, 10.112742669262735931374268000076, 11.20905292495088040082827182199, 12.01014859684292641781165283804, 12.59852481238512107625792910257, 13.64232914370123143424285293569, 14.654241039171863300978194169518, 16.37617490384016028316913547996, 16.74320200385881254559421210673, 17.859283177931881845838229504277, 18.43594315064176254919813708945, 19.269731996431257042286081982280, 19.97653945803311168396727806938, 20.95413120843455004809416565296, 22.01789415473742836787753545944, 22.70676793046108892164889718141, 23.8013575153742659771243448720, 24.72522700598811102130948880831