L(s) = 1 | + (0.909 + 0.415i)3-s + (0.755 + 0.654i)5-s + (−0.841 + 0.540i)7-s + (0.654 + 0.755i)9-s + (−0.989 − 0.142i)11-s + (0.540 − 0.841i)13-s + (0.415 + 0.909i)15-s + (0.959 + 0.281i)17-s + (0.281 + 0.959i)19-s + (−0.989 + 0.142i)21-s + (0.142 + 0.989i)25-s + (0.281 + 0.959i)27-s + (−0.281 + 0.959i)29-s + (−0.415 − 0.909i)31-s + (−0.841 − 0.540i)33-s + ⋯ |
L(s) = 1 | + (0.909 + 0.415i)3-s + (0.755 + 0.654i)5-s + (−0.841 + 0.540i)7-s + (0.654 + 0.755i)9-s + (−0.989 − 0.142i)11-s + (0.540 − 0.841i)13-s + (0.415 + 0.909i)15-s + (0.959 + 0.281i)17-s + (0.281 + 0.959i)19-s + (−0.989 + 0.142i)21-s + (0.142 + 0.989i)25-s + (0.281 + 0.959i)27-s + (−0.281 + 0.959i)29-s + (−0.415 − 0.909i)31-s + (−0.841 − 0.540i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.271 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.271 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.432742591 + 1.084546504i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.432742591 + 1.084546504i\) |
\(L(1)\) |
\(\approx\) |
\(1.355552530 + 0.5045579235i\) |
\(L(1)\) |
\(\approx\) |
\(1.355552530 + 0.5045579235i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.909 + 0.415i)T \) |
| 5 | \( 1 + (0.755 + 0.654i)T \) |
| 7 | \( 1 + (-0.841 + 0.540i)T \) |
| 11 | \( 1 + (-0.989 - 0.142i)T \) |
| 13 | \( 1 + (0.540 - 0.841i)T \) |
| 17 | \( 1 + (0.959 + 0.281i)T \) |
| 19 | \( 1 + (0.281 + 0.959i)T \) |
| 29 | \( 1 + (-0.281 + 0.959i)T \) |
| 31 | \( 1 + (-0.415 - 0.909i)T \) |
| 37 | \( 1 + (-0.755 + 0.654i)T \) |
| 41 | \( 1 + (0.654 - 0.755i)T \) |
| 43 | \( 1 + (0.909 + 0.415i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.540 - 0.841i)T \) |
| 59 | \( 1 + (0.540 - 0.841i)T \) |
| 61 | \( 1 + (-0.909 + 0.415i)T \) |
| 67 | \( 1 + (-0.989 + 0.142i)T \) |
| 71 | \( 1 + (-0.142 - 0.989i)T \) |
| 73 | \( 1 + (0.959 - 0.281i)T \) |
| 79 | \( 1 + (0.841 + 0.540i)T \) |
| 83 | \( 1 + (-0.755 + 0.654i)T \) |
| 89 | \( 1 + (0.415 - 0.909i)T \) |
| 97 | \( 1 + (0.654 - 0.755i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.5181569066563768702163748038, −23.75236563319409696673840802445, −22.938740728807950322604856715662, −21.46225046954759073140811486272, −20.96411885870039746731168245954, −20.12253998775128655965720612280, −19.26833729514771729327023006696, −18.40685845255355619490574876584, −17.49935190156544044011887595380, −16.332322912499711748382106457807, −15.73007830650519008169663326318, −14.33110830343255933195134642520, −13.585061536392380236822753909533, −13.0512964790565773830554415108, −12.16763221147980784081511601227, −10.5858419500925938537296174937, −9.586228794735260906294501644141, −9.04382341876854060781787063310, −7.84646312111839403146328688625, −6.93470694598074144248539352364, −5.866738039425671371156033563553, −4.55950608655609211411882673531, −3.32709694034903130441772987648, −2.29184227694616175849137932217, −1.03525909316958739273604854784,
1.84356685031778090771460198355, 3.01320145047168925354883081330, 3.4748398551793464723583252172, 5.30934520563851132843119859571, 6.027859478289452991600028019029, 7.42136181859413129182857102861, 8.30935733071946600693001452501, 9.4541381713221276009979819620, 10.135119704419920516253779460120, 10.83316122399186386496090555752, 12.5746618555109011320922559165, 13.216483469527007667063796949418, 14.16635828508775210000444731849, 14.99591333674042193232690243935, 15.81323319350743476403109459706, 16.635502363199889444616535456158, 18.126020769052476993385985131034, 18.66717448903072250606615694038, 19.46761920209414258269319144335, 20.78970707686177712000163452804, 21.08292123656882590368249828037, 22.25707414799134646785351686281, 22.75315460327418211745545362632, 24.130579625717648395546587256770, 25.29132223663489656989815718117